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Agenda

• Context-Driven Testing

• Early Performance Testing

– Exploratory, Continuous

• Environment / Scope / Granularity

• Load generation

• Performance Testing / Engineering Strategy
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Context-Driven Testing

• Context-driven approach was initially 
introduced by James Bach, Brian Marick, Bret 
Pettichord, and Cem Kaner

– http://context-driven-testing.com

• Declared a “school” in 2001 (Lessons Learned 
in Software Testing)

– Became political
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Basic Principles

• The value of any practice depends on its 
context.

• There are good practices in context, but there 
are no best practices.

• People, working together, are the most 
important part of any project’s context.

• Projects unfold over time in ways that are 
often not predictable.
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Basic Principles

• The product is a solution. If the problem isn’t 
solved, the product doesn’t work.

• Good software testing is a challenging 
intellectual process.

• Only through judgment and skill, exercised 
cooperatively throughout the entire project, 
are we able to do the right things at the right 
times to effectively test our products.
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“Traditional” Approach
• Load / Performance Testing is:

– Last moment before deployment
• Last step in the waterfall process
• Checking against given requirements / SLAs 
• Throwing it back over the wall if reqs are not met

– System-level
– Realistic workload

• With variations when needed: stress, uptime, etc.

– Lab environment 
• Often scale-down 

– Protocol level record-and-playback
• Expensive tools requiring special skills
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Agile Development
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• Agile development should be rather a trivial 
case for performance testing

– You have a working system each iteration to test 
early by definition.

– You need performance engineer for the whole 
project 

• Savings come from detecting problems early

• You need to adjust requirements for 
implemented functionality

– Additional functionality will impact performance

The Main Issue on the Agile Side

• It doesn’t [always] work this way in practice

• That is why you have “Hardening Iterations”, 
“Technical Debt” and similar notions

• Same old problem: functionality gets priority 
over performance

10
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The Main Issue on the Testing Side
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• Performance Engineering teams don’t scale 
well

– Even assuming that they are competent and 
effective

• Increased volume exposes the problem

– Early testing

– Each iteration

• Remedies: automation, making performance 
everyone’s job 

Early Testing - Mentality Change

12

• Making performance everyone’s job

• Late record/playback performance testing -> 
Early Performance Engineering

• System-level requirements -> Component-level 
requirements

• Record/playback approach -> Programming to 
generate load/create stubs

• "Black Box" -> "Grey Box”
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Continuum of Options
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NewWell-known

System

Testing Approach

Exploratory / 
Agile

Automated /
Regression

Traditional

Traditional

Exploratory Performance Testing

• Rather alien for performance testing, but 
probably more relevant than for functional 
testing

• We learn about system’s performance as we 
start to run test
– Only guesses for new systems

• Rather a performance engineering process 
bringing the system to the proper state than 
just testing

14
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Continuous Performance Testing
• You see Performance CI presentations at every 

conference nowadays….

and

• Still opinions vary 

– From “full automation” to:
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Different Perspectives

• Consultant: need to test the system

– In its current state

– Why bother about automation?

– External or internal

• Performance Engineer

– On an agile team

– Need to test it each build/iteration/sprint/etc.

• Automation Engineer / SDET / etc. 
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Automation: Considerations

17

• You need know system well enough to make 
meaningful automation

• If system is new, overheads are too high

– So almost no automation in traditional environments

• If the same system is tested again and again

– It makes sense to invest in setting up automation

• Automated interfaces should be stable enough

– APIs are usually more stable on early stages

Time / Resource Considerations

• Performance tests take time and resources

– The larger tests, the more

• May be not an option on each check-in

• Need of a tiered solution

– Some performance measurements each build

– Daily mid-size performance tests

– Periodic large-scale / uptime tests outside CI  
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Automation: Limitations
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• Works great to find regressions and check 
against requirements

• Doesn’t cover:

– Exploratory tests

– Large scale / scope / duration / volume

• “Full Automation” doesn’t look like a real 
option, should be a combination

Agenda
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Environment

• Cloud

– No more excuse of not having hardware

• Lab vs. Service (SaaS) vs. Cloud (IaaS)

– For both the system and load generators

• Test vs. Production
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Scenarios

• System validation for high load
– Outside load (service or cloud), production system
– Wider scope, lower repeatability 

• Performance optimization / troubleshooting
– Isolated lab environment
– Limited scope, high repeatability

• Testing in Cloud
– Lowering costs (in case of periodic tests)
– Limited scope, low repeatability
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Find Your Way

• If performance risk is high it may be a 
combination of environments, e.g.

– Outside tests against the production environment 
to test for max load

– Lab for performance optimization / 
troubleshooting

– Limited performance environments  to be used as 
part of continuous integration
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Scope / Granularity
• System level

• Component level
– Service Virtualization, etc.

• Server time

• Server + Network (WAN simulation, etc.)

• End-to-end (User Experience)

• Each may require different approach / tools
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Record and Playback: Protocol 
Level

Load Testing Tool

Virtual Users

ServerLoad Generator

Application

Network
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Considerations

• Usually doesn't work for testing components

• Each tool support a limited number of 
technologies (protocols)

• Some technologies are very time-consuming

• Workload validity in case of sophisticated logic 
on the client side is not guaranteed
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Record and Playback: UI Level
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Load Testing Tool

Virtual

Users

ServerLoad Generator

Application

NetworkBrowsers
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Considerations

• Scalability 

– Still require more resources

• Supported technologies

• Timing accuracy

• Playback accuracy

– For example, for HtmlUnit
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Programming

Load Testing Tool      App.

Virtual 
Users

ServerLoad Generator

Application

Network
API
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Considerations

• Requires programming / access to APIs

• Tool support

– Extensibility

– Language support

• May require more resources

• Environment may need to be set 
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Production Workload

• A/B testing, canary testing

• Should work well if

– homogenous workloads and a way to control 
them precisely 

– potential issues have minimal impact on user 
satisfaction and company image and you can 
easily rollback the changes 

– fully parallel and scalable architecture
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Performance Risk Mitigation
• Single-user performance engineering 

– Profiling, WPO, single-user performance

• Software Performance Engineering
– Modeling, Performance Patterns

• Instrumentation / APM / Monitoring
– Production system insights

• Capacity Planning/Management
– Resources Allocation

• Continuous Integration / Deployment
– Ability to deploy and remove changes quickly

34
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Defining Performance Testing Strategy

• What are performance risks we want to 
mitigate?

• What part of this risks should be mitigated by 
performance testing?

• Which performance tests will mitigate the risk?

• When we should run them?

• What process/environment/approach/tools we 
need in our context to implement them?
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Examples

• Handling full/extra load

– System level, production[-like env], realistic load

• Catching regressions

– Continuous testing, limited scale/env

• Early detection of performance problems

– Exploratory tests, targeted workload

• Performance optimization/investigation

– Dedicated env, targeted workload

36
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Summary

• Testing strategy became very non-trivial

– A lot of options along many dimensions

– Defined by context

• “Automation” is only one part of it

– Important for iterative development 

• Part of performance engineering strategy

– Should be considered amongst other activities
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