
Page 1

Context-Driven Performance Testing

Context-Driven Performance
Testing

Alexander Podelko
alex.podelko@oracle.com

alexanderpodelko.com/blog

@apodelko

February 20, 2019

About the Speaker

• Alexander Podelko

• Specializing in performance since 1997

• Currently Consulting Member of Technical

Staff at Oracle (Stamford, CT office)

• Performance testing and optimization of

Enterprise Performance Management

(EPM) a.k.a. Hyperion products

• Board director at Computer Measurement

Group (CMG) – non-profit organization of

performance and capacity professionals

Disclaimer: The views expressed here are my personal views only and do not necessarily represent those of my current or previous employers. All

brands and trademarks mentioned are the property of their owners.

Page 2

Context-Driven Performance Testing

Agenda

• Context-Driven Testing

• Early Performance Testing

– Exploratory, Continuous

• Environment / Scope / Granularity

• Load generation

• Performance Testing / Engineering Strategy

3

Context-Driven Testing

• Context-driven approach was initially
introduced by James Bach, Brian Marick, Bret
Pettichord, and Cem Kaner

– http://context-driven-testing.com

• Declared a “school” in 2001 (Lessons Learned
in Software Testing)

– Became political

4

Page 3

Context-Driven Performance Testing

Basic Principles

• The value of any practice depends on its
context.

• There are good practices in context, but there
are no best practices.

• People, working together, are the most
important part of any project’s context.

• Projects unfold over time in ways that are
often not predictable.

5

Basic Principles

• The product is a solution. If the problem isn’t
solved, the product doesn’t work.

• Good software testing is a challenging
intellectual process.

• Only through judgment and skill, exercised
cooperatively throughout the entire project,
are we able to do the right things at the right
times to effectively test our products.

6

Page 4

Context-Driven Performance Testing

“Traditional” Approach
• Load / Performance Testing is:

– Last moment before deployment
• Last step in the waterfall process
• Checking against given requirements / SLAs
• Throwing it back over the wall if reqs are not met

– System-level
– Realistic workload

• With variations when needed: stress, uptime, etc.

– Lab environment
• Often scale-down

– Protocol level record-and-playback
• Expensive tools requiring special skills

7

Agenda

• Context-Driven Testing

• Early Performance Testing

– Exploratory, Continuous

• Environment / Scope / Granularity

• Load generation

• Performance Testing / Engineering Strategy

8

Page 5

Context-Driven Performance Testing

Agile Development

9

• Agile development should be rather a trivial
case for performance testing

– You have a working system each iteration to test
early by definition.

– You need performance engineer for the whole
project

• Savings come from detecting problems early

• You need to adjust requirements for
implemented functionality

– Additional functionality will impact performance

The Main Issue on the Agile Side

• It doesn’t [always] work this way in practice

• That is why you have “Hardening Iterations”,
“Technical Debt” and similar notions

• Same old problem: functionality gets priority
over performance

10

Page 6

Context-Driven Performance Testing

The Main Issue on the Testing Side

11

• Performance Engineering teams don’t scale
well

– Even assuming that they are competent and
effective

• Increased volume exposes the problem

– Early testing

– Each iteration

• Remedies: automation, making performance
everyone’s job

Early Testing - Mentality Change

12

• Making performance everyone’s job

• Late record/playback performance testing ->
Early Performance Engineering

• System-level requirements -> Component-level
requirements

• Record/playback approach -> Programming to
generate load/create stubs

• "Black Box" -> "Grey Box”

Page 7

Context-Driven Performance Testing

Continuum of Options

13

NewWell-known

System

Testing Approach

Exploratory /
Agile

Automated /
Regression

Traditional

Traditional

Exploratory Performance Testing

• Rather alien for performance testing, but
probably more relevant than for functional
testing

• We learn about system’s performance as we
start to run test
– Only guesses for new systems

• Rather a performance engineering process
bringing the system to the proper state than
just testing

14

Page 8

Context-Driven Performance Testing

Continuous Performance Testing
• You see Performance CI presentations at every

conference nowadays….

and

• Still opinions vary

– From “full automation” to:

15

Different Perspectives

• Consultant: need to test the system

– In its current state

– Why bother about automation?

– External or internal

• Performance Engineer

– On an agile team

– Need to test it each build/iteration/sprint/etc.

• Automation Engineer / SDET / etc.

16

Page 9

Context-Driven Performance Testing

Automation: Considerations

17

• You need know system well enough to make
meaningful automation

• If system is new, overheads are too high

– So almost no automation in traditional environments

• If the same system is tested again and again

– It makes sense to invest in setting up automation

• Automated interfaces should be stable enough

– APIs are usually more stable on early stages

Time / Resource Considerations

• Performance tests take time and resources

– The larger tests, the more

• May be not an option on each check-in

• Need of a tiered solution

– Some performance measurements each build

– Daily mid-size performance tests

– Periodic large-scale / uptime tests outside CI

18

Page 10

Context-Driven Performance Testing

Automation: Limitations

19

• Works great to find regressions and check
against requirements

• Doesn’t cover:

– Exploratory tests

– Large scale / scope / duration / volume

• “Full Automation” doesn’t look like a real
option, should be a combination

Agenda

• Context-Driven Testing

• Early Performance Testing

– Exploratory, Continuous

• Environment / Scope / Granularity

• Load generation

• Performance Testing / Engineering Strategy

20

Page 11

Context-Driven Performance Testing

Environment

• Cloud

– No more excuse of not having hardware

• Lab vs. Service (SaaS) vs. Cloud (IaaS)

– For both the system and load generators

• Test vs. Production

21

Scenarios

• System validation for high load
– Outside load (service or cloud), production system
– Wider scope, lower repeatability

• Performance optimization / troubleshooting
– Isolated lab environment
– Limited scope, high repeatability

• Testing in Cloud
– Lowering costs (in case of periodic tests)
– Limited scope, low repeatability

22

Page 12

Context-Driven Performance Testing

Find Your Way

• If performance risk is high it may be a
combination of environments, e.g.

– Outside tests against the production environment
to test for max load

– Lab for performance optimization /
troubleshooting

– Limited performance environments to be used as
part of continuous integration

23

Scope / Granularity
• System level

• Component level
– Service Virtualization, etc.

• Server time

• Server + Network (WAN simulation, etc.)

• End-to-end (User Experience)

• Each may require different approach / tools

24

Page 13

Context-Driven Performance Testing

Agenda

• Context-Driven Testing

• Early Performance Testing

– Exploratory, Continuous

• Environment / Scope / Granularity

• Load generation

• Performance Testing / Engineering Strategy

25

Record and Playback: Protocol
Level

Load Testing Tool

Virtual Users

ServerLoad Generator

Application

Network

26

Page 14

Context-Driven Performance Testing

Considerations

• Usually doesn't work for testing components

• Each tool support a limited number of
technologies (protocols)

• Some technologies are very time-consuming

• Workload validity in case of sophisticated logic
on the client side is not guaranteed

27

Record and Playback: UI Level

28

Load Testing Tool

Virtual

Users

ServerLoad Generator

Application

NetworkBrowsers

Page 15

Context-Driven Performance Testing

Considerations

• Scalability

– Still require more resources

• Supported technologies

• Timing accuracy

• Playback accuracy

– For example, for HtmlUnit

29

Programming

Load Testing Tool App.

Virtual
Users

ServerLoad Generator

Application

Network
API

30

Page 16

Context-Driven Performance Testing

Considerations

• Requires programming / access to APIs

• Tool support

– Extensibility

– Language support

• May require more resources

• Environment may need to be set

31

Production Workload

• A/B testing, canary testing

• Should work well if

– homogenous workloads and a way to control
them precisely

– potential issues have minimal impact on user
satisfaction and company image and you can
easily rollback the changes

– fully parallel and scalable architecture

32

Page 17

Context-Driven Performance Testing

Agenda

• Context-Driven Testing

• Early Performance Testing

– Exploratory, Continuous

• Environment / Scope / Granularity

• Load generation

• Performance Testing / Engineering Strategy

33

Performance Risk Mitigation
• Single-user performance engineering

– Profiling, WPO, single-user performance

• Software Performance Engineering
– Modeling, Performance Patterns

• Instrumentation / APM / Monitoring
– Production system insights

• Capacity Planning/Management
– Resources Allocation

• Continuous Integration / Deployment
– Ability to deploy and remove changes quickly

34

Page 18

Context-Driven Performance Testing

Defining Performance Testing Strategy

• What are performance risks we want to
mitigate?

• What part of this risks should be mitigated by
performance testing?

• Which performance tests will mitigate the risk?

• When we should run them?

• What process/environment/approach/tools we
need in our context to implement them?

35

Examples

• Handling full/extra load

– System level, production[-like env], realistic load

• Catching regressions

– Continuous testing, limited scale/env

• Early detection of performance problems

– Exploratory tests, targeted workload

• Performance optimization/investigation

– Dedicated env, targeted workload

36

Page 19

Context-Driven Performance Testing

Summary

• Testing strategy became very non-trivial

– A lot of options along many dimensions

– Defined by context

• “Automation” is only one part of it

– Important for iterative development

• Part of performance engineering strategy

– Should be considered amongst other activities

37

Questions?
Alexander Podelko

alex.podelko@oracle.com

alexanderpodelko.com/blog

@apodelko

