
OCTOBER 28–31, 2013 IN POTSDAM, GERMANY

EUROPE’S GREATEST AGILE SOFTWARE TESTING EVENT

Dan
North

Lisa
Crispin

Markus
Gärtner

Meike
Mertsch

Janet
Gregory

Mary
Gorman

Peter
Walen

Matt
Heusser

Huib
Schoots

Pascal
Dufour

Werner
Lieblang

Tanja
Schmitz-Remberg

Jean-Paul
Varwijk

Alon
Linetzki

Dani
Almog

Yaron
Tsubery

Peter
Saddington

Zuzi
Sochova

Eduard
Kunce

J. B.
Rainsberger

David
Evans

Choose from 15 amazing tutorials by our agile wizards and gurus:

Are you starting to feel the symptoms of not being
agile enough? We have a cure for this problem …

Watch the exclusive news about the zombie
software testing pandemic arriving in Europe at:

bit.ly/14gc2rI

September 2013

The Magazine for Professional Testers

23

24 Testing Experience – 23/2013

By Alex Podelko

Load Testing: Which Tool to Choose?
The topic of load testing tool selection always triggers a lot of discussion.
Unfortunately, it most often turns into religious wars than objective
technical analysis – partially because the outcome will depend upon
your specific needs, partially because few people have time to really
investigate different tools, partially because vendors are deeply involved
and have their own agenda.

Let us first define load testing. The term is used here for everything re-
quiring application of multi-user synthetic load. Many different terms
are used for such multi-user testing, from performance, concurrency,
stress, scalability, and endurance, to longevity, soak, stability, or reli-
ability. There are different (and sometimes conflicting) definitions of
these terms. However, they describe testing from somewhat different
points of view, meaning they are not mutually exclusive.

While each kind of performance testing may have different goals and test
designs, in most cases they use the same approach: applying multi-user
synthetic workload to the system. The term “load testing” is used here,
because it better contrasts multi-user testing with other performance
engineering methods such as single-user performance testing without
the need for a load testing tool.

A typical load testing process is shown in Figure 1.

Collect Requirements

Create Test Assets

Define Load

Run Tests

Analyze Results

Done

Tune System

Goals are not met
Goals are met

Figure 1. Load Testing Process

You have probably already seen something like this – but here two differ-
ent steps are shown explicitly: “define load” and “create test assets.” The
“define load” step (sometimes referred to as workload characterization or
workload modeling) is a logical description of the load we want to apply
(e.g. users log in, navigate to a random item in the catalog, add it to the
shopping cart, pay, and logout with an average of ten seconds of think
time between actions). The “create test assets” step is the implementa-
tion of this workload and the conversion of the logical description into
something that will physically create that load during the “run tests”
step. Manual testing may still be an option in a few cases (when load
is low and repeatability is not needed) – then it can be just the descrip-
tion given to each tester. But in all other load testing cases, it should be
a program or a script.

As far as you need a tool for load testing, the subject of selecting one be-
comes very important. Moreover, there are attempts (not often without
vendor involvement) to present a load test tool as a complete solution
to load testing, making the question of selection bigger than it should
be. Yes, a good tool in load testing is very important – but it is still just a
tool. A carpenter needs good tools, but tools do not make his job; he still
needs skills and experience to use them. The same is true in load test-
ing. Let’s look at different aspects of load testing tools, keeping in mind
that they are only tools to help you do your job – they won’t do it for you.

Classifying and evaluating load testing tools is not easy, as they include
different sets of functionality often crossing borders of whatever criteria
are used. In most cases, any classification is either an oversimplification
(which in some cases still may be useful) or a marketing trick to highlight
advantages of specific tools. There are many aspects differentiating load
testing tools and it is probably better to evaluate tools on each aspect
separately.

Here we will discuss some aspects of load testing tools and list some
considerations impacting the selection process. The list is far from com-
prehensive and is provided rather to illustrate the existing issues, show-
ing how the selection process for specific needs may be approached. A
few tools are mentioned to illustrate certain aspects, but as there is
no intention to provide a deep analysis of all available tools (there are
probably a few hundred such tools around), there is no implication that
the mentioned tools are necessarily better than others. Let’s consider
technical aspects first.

Load Generation
There are three main approaches to workload generation and every tool
may be evaluated on which of them it supports and how.

Protocol-level recording/playback: this is the mainstream approach of
load testing: recording communication between two system tiers and
playing back the automatically created script (usually, of course, after
proper correlation and parameterization). As far as no client-side activi-
ties are involved, it allows the simulation of a large number of users. The
tool should support the protocol used for communication between two
tiers of the system to be used.

With quick internet growth and the popularity of browser-based clients,
most products support only HTTP or a few select web-related protocols.
To the author’s knowledge, only HP LoadRunner and Microfocus SilkPer-
former try to keep up with support for all popular protocols. Therefore,
if you need to record a special protocol, you will probably end up looking
at these two tools (unless you find a special niche tool supporting your
specific protocol). This somewhat explains the popularity of LoadRun-
ner at large corporations using nearly all possible protocols. The level of
support of specific protocols differs significantly, too. Some HTTP-based
protocols are extremely difficult to correlate if there is no built-in support,
so you should look for that kind of specific support. For example, Oracle
Application Testing Suite may have better support of Oracle technologies.

Quite often the whole area of load testing is reduced to pre-production
testing using protocol-level recording/playback. While it was (and still

Testing Experience – 23/2013 25

is) the mainstream approach to testing applications, it is definitely just
one type of load testing using only one type of load generation – such
equivalency is a serious conceptual mistake, dwarfing load testing and
undermining performance engineering in general.

UI-level recording/playback: this option has been available for a long
time, but it is much more viable now. For example, it was possible to use
Mercury/HP WinRunner or QuickTest Professional (QTP) scripts in load
tests, but you needed a separate machine for each virtual user (or at
least a separate terminal session). That drastically limited the load level
you could achieve. Other known options were, for example, Citrix and
Remote Desktop Protocol (RDP) protocols in LoadRunner – which always
were the last resort when nothing else was working, but were notoriously
tricky to play back. New UI-level tools for browsers, such as Selenium,
have extended possibilities of the UI-level approach, allowing the run-
ning of multiple browser per machine (limiting scalability only to the
resources available to run browsers). Moreover, UI-less browsers, such as
HtmlUnit okr PhantomJS, require significantly fewer resources than real
browsers. There are now multiple tools supporting this approach, such as
Appvance, which directly harnesses Selenium and HtmlUnit for load test-
ing; or LoadRunner TruClient protocol and SOASTA CloudTest, which use
proprietary solutions to achieve low-overhead playback. Nevertheless,
questions of supported technologies, scalability, and timing accuracy
remain largely undocumented, so the approach requires evaluation in
every specific non-trivial case.

Programming. There are cases when you can’t (or can, but only with
great difficulty) use recording at all. In such cases, API calls from the
script may be an option. Sometimes it is the only option for component

performance testing. Other variations of this approach are web services
scripting or use of unit testing scripts for load testing. And, of course,
you may need to add some logic to your scripts. You program the script
by whatever means and then either create a test harness to execute it
or use a load testing tool to execute scripts, coordinate their executions,
and report and analyze results. To do this, the tool should have the ability
to add code to (or invoke code from) your script. And, of course, if the
tool’s language is different from the language of your API, you would
need to figure out a way to plumb them. Tools, using standard languages
such as C (e.g. LoadRunner) or Java (e.g. Oracle Application Testing Suite)
may have an advantage here. However, it is knowing all the details of
the communication between client and server to use right sequences
of API calls that is often the challenge.

Deployment Model
There were many discussions about different deployment models: lab
vs. cloud vs. service. There are some advantages and disadvantage of
each model. Depending on your goals and the systems to test, you may
prefer one deployment model over another. For example, if you want to
see the effect of performance improvement (performance optimization),
you may be better off using an isolated lab environment. If you want to
do load testing of the whole production environment end-to-end under
full load and are not concerned about small variations, testing from the
cloud may be more appropriate.

But for comprehensive performance testing, you may need both lab
testing (with reproducible results for performance optimization) and

Testing for Developers
Whilst training for testers has made great progress
in recent years – alone in Germany there are more
than 10,000 certifi ed testers – the role of the devel-
oper in software testing is mostly underestimated;
they are often the driving force in the area of com-
ponent testing. For these reasons it is important that
also developers receive basic knowledge in the
central themes of software testing.

As a result Díaz & Hilterscheid has created the two-
day course “Testing for Developers” on the basis of
the internationally recognized ISTQB® Certifi ed Tes-
ter training. The fi rst day covers the fundamentals
of software testing, including the terminology used,

the test process and its integration into the software
development process, and the various test levels
and testing types. The second day the techniques
of static testing are covered and specifi cation-
based test design techniques are demonstrated,
with exercises for deeper understanding. Finally,
the principles of risk-based testing are covered
and the principal aspects of defect management
taught.

After completion of the course, developers are
able to construct systematic test cases by them-
selves and can execute developer tests to achieve
the test completion criteria. In addition, they can

use the necessary terminology in order to confer
with system and acceptance testers. In this way an
optimization of the entire test process is possible.

For current training dates, please visit our
website or contact us:

Díaz & Hilterscheid Unternehmensberatung GmbH
Kurfürstendamm 179
10707 Berlin
Germany

Phone: +49 (0)30 74 76 28-0
Fax: +49 (0)30 74 76 28-99

E-mail: training@diazhilterscheid.com
Website: training.diazhilterscheid.com

http://www.diazhilterscheid.de/en/courses.php?id=326&pk_campaign=TE23%20Magazine&pk_kwd=Ad%20Testing%20for%20Developers

26 Testing Experience – 23/2013

distributed realistic outside testing (to check real-life issues you can’t
simulate in the lab). Doing both would be expensive and makes sense only
when you really care about performance and have a global system – but
it not rare, and if you are not there yet, you can get there eventually. If
there is a chance you’ll face these issues, it would be better to have a tool
supporting different deployment models. Whether lab or cloud, another
important question is what kind of software/hardware/cloud the tool
requires/supports. Many tools use low-level system functionality, so
minor differences in OS or browser version may make a big difference –
and it would be a very unpleasant surprise if your platform of choice or
your corporate browser standard is not supported by the tool.

Scaling
When you have only a few users to simulate, it is usually not a problem.
The more users you need to simulate, the more important the right tool
becomes. Tools differ drastically on how many resources they need per
simulated user and how well they handle large volumes of informa-
tion. This may differ significantly even for the same tool, depending
on the protocol used and the specifics of your script. As soon as you
reach thousands of users, it may become a major problem. For a very
large number of users, some automation – like automatic creation of
a specified number of load generators across several clouds in SOASTA
CloudTest – may be very handy.

Environment Monitoring and Result Analysis
Environment monitoring and result analysis are two very important sets
of functionality. They are grouped together here for one single reason:
while theoretically it is possible to do them both using separate tools,
it significantly degrades productivity and may require building some
plumbing infrastructure. So while these two areas may look optional,
integrated and powerful monitoring and result analysis are both very
important. The more complex system and tests, the more important
they become.

Integration Support
Integration support becomes increasingly important as everyone talks
about continuous integration and agile methodologies. There are some
vendors claiming their load testing tools better fit agile processes, but
in the best case it means that the tool is a little easier to handle (and,
unfortunately, often just because there is not much functionality).

What makes agile projects really different is their need to run large
number of tests repeatedly – resulting in the need for tools support-
ing performance testing automation. Unfortunately, even if a tool has
something that may be used for automation, like starting by a command
line with parameters, it may be difficult to discover. In case continuous
integration is on the horizon (to whatever degree), it is important to
understand what the tool provides to support CI.

Of course, non-technical criteria are important, too:

Cost
There are many commercial tools (with dramatically different license
costs) as well as free tools. And there are some choices in between: for
example, SOASTA has the CloudTest Light edition, which is free up to

100 users. There are over one hundred such different tools. Some free
tools, such as JMeter, are mature enough and well-known (BlazeMeter,
for example, even provides JMeter-based cloud services). But many free
and inexpensive tools are very limited in functionality.

Skills
Considering the large number of tools and the relatively small number
of people working in this field, the labor market supports only the most
popular tools. Even for second-tier tools, there are few people around and
few positions available. So by not choosing the market leaders, you will
not be able to count on finding people with this specific tool experience.
Of course, an experienced performance engineer will learn any tool – but
it may take some time until productivity reaches the expected level.

Support
Recording and load generation have a lot of background sophistication,
and issues could happen in any area. Availability of good support or at
least an active user community may significantly improve productivity.

In summary, this is, of course, not a comprehensive list of possible aspect
of evaluation – rather a few starting points. Unfortunately, in most cases
you can’t just rank tools on a simple better/worse scale. It may be that
a simple tool will work quite well in your case. If your business is built
around a single website, doesn’t use sophisticated technologies, and
load is not extremely high, then almost every tool will work for you. The
further you are from this state, the more challenging it is to select the
right tool. It may even be that you will need several tools.

Two main takeaways are:

 ▪ While all load testing tools look similar, they are actually quite dif-
ferent. And unfortunately, generic descriptions (for example, on the
vendor website) are usually useless in understanding the differ-
ences.

 ▪ Your situation is different. A tool may be very good in one situation
and completely useless in another. The value of the tool is not abso-
lute; rather it is relative to your situation.

And while you may use the aforementioned aspects to evaluate tools,
it is not guaranteed that a specific tool will work with your specific
product (unless it uses a well-known and straightforward technology).
That actually means that if you have a few systems to test, you need to
evaluate the tools you consider using your systems and see if the tools
can handle them. If you have many, choosing a tool supporting multiple
load generation options is probably a good idea (naturally testing it with
at least the most important systems prior to implementation). ◼

For the last 16 years, Alexander Podelko has worked as
a performance engineer and architect for several com-
panies. Currently he is a consulting member of techni-
cal staff at Oracle, responsible for performance testing
and optimization of enterprise performance manage-
ment and business intelligence (a.k.a. Hyperion) prod-
ucts. He blogs at alexanderpodelko.com/blog and can
be found on Twitter as @apodelko.

> about the author

http://alexanderpodelko.com/blog

