
The Magazine for Agile Developers and Agile Testers

August 2012

issue 11www.agilerecord.com	 free digital version	 made in Germany	 ISSN 2191-1320

Requirements in Agile Projects

page 57 Agile Record – www.agilerecord.com

What is Special?
It looks like agile methodologies are somewhat struggling with
performance requirements (and non-functional requirements in
general). Probably there are several reasons for that. One is that
actually even traditional software development methodologies
and processes never came with a good approach to handle per-
formance requirements. They are, of course, considered in both
literature and practical projects – but are usually handled rather in
ad hoc manner. Actually the process of gathering and elaboration
of performance requirements is rather agile in itself, and attempts
to make it rigorous and formal look unnatural and have never
fully succeeded – so it should be easier and more natural to do
it as part of agile methods. Still the challenge of handling multi-
dimensional and difficult to formalize performance requirements
remains intact and the difference is rather in minor adjustments1 to
agile processes than in the essence of performance requirements.

Another reason is that practical agile development is struggling
with performance in general. Theoretically it should be a piece of
cake: every iteration you have a working system and know exactly
where you stand with the system’s performance. You shouldn’t
wait until the end of the waterfall process to figure out where you
are – on every iteration you can track your performance against
requirements and see the progress (making adjustments on what
is already implemented and what is not yet). Clearly it is supposed
to make the whole performance engineering process much more
straightforward.

Unfortunately, it looks like it doesn’t always work this way in prac-
tice. So such notions as “hardening iterations” and “technical
debt” get introduced. Although it is probably the same old problem:
functionality gets priority over performance (which is somewhat
explainable: you need first some functionality before you can talk
about its performance). So performance related activities slip to-
ward the end of the project, and the chance is missed to implement
a proper performance engineering process built around perfor-
mance requirements. Another issue here is that agile methods are

oriented toward breaking projects into small tasks, which is quite
difficult to do with performance (and many other non-functional
requirements)6 – performance-related activities usually span the
whole project.

Let’s now consider performance requirements in detail, keeping
these issues in mind, to see if the statements above have some
ground.

Performance metrics
Before diving into details of the performance requirements process,
let’s discuss the most important performance metrics (sometimes
referred to as Key Performance Indicators, KPIs). It is a challenge
to get all stakeholders to agree on specific metrics and ensure
that they can be measured in a compatible way at every stage
of the lifecycle (which may require specific monitoring tools and
application instrumentation).

Let’s take a high-level view of a system (Fig.1). On one side we
have users who use the system to satisfy their needs. On another
side we have the system, a combination of hardware and software,
created (or to be created) to satisfy users’ needs.

Fig.1. A high-level view of a system.

Business performance requirements
Users are not interested in what is inside the system and how it
functions as soon as their requests get processed in a timely man-
ner (leaving aside personal curiosity and subjective opinions). So

Performance Requirements
in Agile Projects
by Alexander Podelko

Users

Hardware

Software

page 58 Agile Record – www.agilerecord.com

business requirements should state how many requests of each
kind must go through the system (throughput) and how quickly they
need to be processed (response times). Both parts are vital: good
throughput with long response times usually is as unacceptable
as are good response times with low throughput. Throughput is a
business requirement, whereas response times have both usability
and business components.

Throughput is the rate at which incoming requests are completed.
Throughput defines the load on the system and is measured in op-
erations per time period. It may be the number of transactions per
second or the number of processed orders per hour. In most cases
we are interested in a steady mode when the number of incoming
requests would be equal to the number of processed requests.

Defining throughput may be pretty straightforward for a system
doing the same type of business operations all the time, like
processing orders or printing reports when they are homogenous.
Clustering requests into a few groups, such as small, medium, and
large reports, may be needed if requests differ significantly. It may
be more difficult for systems with complex workloads because
the ratio of different types of requests can change with the time
and season.

Homogenous throughput with randomly arriving requests (some-
times assumed in modeling and requirements analysis) is a sim-
plification in most cases. Throughput usually varies with time. For
example, throughput can be defined for a typical hour, peak hour,
and non-peak hour for each particular kind of load. In environments
with fixed hardware configuration the system should be able to
handle peak load, but in virtualized or cloud environments it may
be helpful to further detail what the load is hour-by-hour to ensure
better hardware utilization.

Quite often, however, the load on the system is characterized by
the number of users. Partially it comes from the business (in many
cases the number of users is easier to find out), and partially it
comes from performance testing: Unfortunately, quite often per-
formance requirements get defined during performance testing
and the number of users is the main lever to manage load in load
generation tools.

However, the number of users doesn’t, by itself, define through-
put. Without defining what each user is doing and how intensely
(i.e. throughput for one user), the number of users doesn’t make
much sense as a measure of load. For example, if 500 users are
each running one short query each minute, we have throughput
of 30,000 queries per hour. If the same 500 users are running
the same queries, but only one query per hour, the throughput is
500 queries per hour. So there may be the same 500 users, but
a 60X difference between loads (and at least the same difference
in hardware requirements for the application – probably more,
considering that not all systems achieve linear scalability).

In addition to different kinds of requests, most systems use ses-
sions: some system resources are associated with the user (source
of requests). So the number of parallel users (sessions) would be
an important requirement further qualifying throughput. In a more

generic way this metric may be named concurrency: the number of
simultaneous users or threads. It is important: even inactive, but
connected users still hold some resources. The number of online
users (the number of parallel sessions) looks like the best metric
for concurrency (complementing throughput and response time
requirements). However, terminology is somewhat vague here,
sometimes “the number of users” has a different meaning. For
example, it may be named or “truly concurrent” users.

Response times (in the case of interactive work) or processing
times (in the case of batch jobs or scheduled activities) define how
fast requests should be processed. Acceptable response times
should be defined in each particular case. A time of 30 minutes
could be excellent for a big batch job, but absolutely unacceptable
for accessing a web page in a customer portal. Response times
depend on workload, so it is necessary to define conditions under
which specific response times should be achieved; for example, a
single user, average load or peak load.

Response time is the time in the system (the sum of queuing
and processing time). Usually there is always some queuing time
because the server is a complex object with sophisticated collabo-
ration of multiple components including processor, memory, disk
system, and other connecting parts. That means that response
time is larger than service time (to use in modeling) in most cases.

Significant research has been done to define what the response
time should be for interactive systems, mainly from two points of
view: what response time is necessary to achieve optimal user’s
performance (for tasks like entering orders), and what response
time is necessary to avoid web site abandonment (for the Internet).
Most researchers agreed that for most interactive applications
there is no point in making the response time faster than one to
two seconds, and it is helpful to provide an indicator (like a progress
bar) if it takes more than eight to 10 seconds.

Response times for each individual transaction vary, so we need to
use some aggregate values when specifying performance require-
ments, such as averages or percentiles (for example, 90 percent
of response times are less than X). The Apdex standard18 uses a
single number to measure user satisfaction.

It is very difficult to consider performance (and, therefore, perfor-
mance requirements) without full context. It depends, for example,
on the volume of data involved, hardware resources provided, and
functionality included in the system. So if any of that information is
known, it should be specified in the requirements. Not everything
may be specified at the same point: while the volume of data is
usually determined by the business and should be documented at
the beginning, the hardware configuration is usually determined
during the design stage.

Technological performance requirements
The performance metrics of the system (the right side of the fig.1)
are not important from the business (or user) point of view, but are
very important for IT (people who create and operate the system).
These internal (technological) requirements are derived from busi-
ness and usability requirements during design and development

page 59 Agile Record – www.agilerecord.com

and are very important for the later stages of the system lifecycle.
Traditionally such metrics were mainly used for monitoring and ca-
pacity management because they are easier to measure, and only
recently tools measuring end-user performance get some traction.

The most wide-spread metric, especially in capacity management
and production monitoring, is resource utilization. The main groups
of resources are CPU, I/O, memory, and network. However, the avail-
able hardware resources are usually a variable in the beginning. It is
one of the goals of the design process to specify hardware needed
for the system from the business requirements and other inputs
like company policies, available expertise, and required interfaces.

When resource requirements are measured as resource utilization,
they are related to a particular hardware configuration. They are
meaningful metrics when the hardware configuration is known.
But these metrics don’t make sense as requirements until the
hardware configuration would be decided upon; how can we talk,
for example, about processor utilization if we don’t know yet how
many processors we would have? And such requirements are not
useful as requirements for software if it gets deployed to different
hardware configurations, and, especially, for Commercial Off-the-
Shelf (COTS) software.

The only way we can speak about resource utilization in early
phases of the system lifecycle is as a generic policy. For example,
corporate policy may be that CPU utilization should be below 70
percent.

When required resources are specified in absolute values, like the
number of instructions to execute or the number of I/O operations
per transaction (as sometimes used, for example, for modeling),
it may be considered as a performance metric of the software
itself, without binding it to a particular hardware configuration. In
the mainframe world, MIPS was often used as such a metric for
CPU consumption, but there is no such widely used metric in the
distributed systems world.

The importance of resource-related requirements is increasing
again with the trends of virtualization, cloud computing, and ser-
vice-oriented architectures. When we depart from the “server(s)
per application” model, it becomes difficult to specify requirements
as resource utilization, as each application will add only incremen-
tally to resource utilization. There are attempts to introduce such
metrics. For example, the ‘CPU usage in MHz’ or ‘usagemhz’ metric
used in the VMware world, or the ‘Megacycles’ metric sometimes
used by Microsoft14. Another related metric sometimes (but rarely)
used is efficiency when it is defined as throughput divided by re-
sources (however, the term is often used differently).

In the ideal case (for example, when the system is CPU bound and
we can scale the system linearly by just adding processors), we
can easily find the needed hardware configuration if we have an
absolute metric of resources required.

For example, if software needs X units of hardware power per
request and a processor has Y units of hardware power, we can
calculate the number of such processors N needed for processing

Z requests as N=Z*X/Y. The reality, of course, is more sophisti-
cated. First of all, we have different kinds of hardware resources:
processors, memory, I/O, and network. Usually we concentrate
on the most critical one keeping in mind others as restrictions.

Scalability is a system’s ability to meet the performance require-
ments as the demand increases (usually by adding hardware).
Scalability requirements may include demand projections such as
increases in the number of users, transaction volumes, data sizes,
or adding new workloads. How response times will increase with
increasing load or data is important too (load or data sensitivity).

From a performance requirements perspective, scalability means
that you should specify performance requirements not only for
one configuration point, but as a function of load or data. For
example, the requirement may be to support throughput increase
from five to 10 transactions per second over the next two years
with a response time degradation of not more than 10 percent.

Scalability is also a technological (internal IT) requirement, or per-
haps even a “best practice” of systems design. From the business
point of view, it is not important how the system is maintained to
support growing demand. If we have growth projections, we prob-
ably need to keep the future load in mind during the system design
and have a plan for adding hardware as needed.

Requirements process
The IEEE Software Engineering Book of Knowledge11 defines four
stages of requirements process:

■■ Elicitation: Identifying sources and collecting requirements.

■■ Analysis: Classifying, elaborating, and negotiating require-
ments.

■■ Specification: Producing a document. While documenting
requirements is important, the way to do this depends on
the software development methodology used, corporate
standards, and other factors.

■■ Validation: Making sure that requirements are correct.

Seeing the words ‘elaborating’ and ‘negotiating’ in the stage de-
scriptions, we may assume that it should fit agile methods well.
Elicitation would match initial requirements gathering (such a crea-
tion of user stories) and Analysis – Specification – Validation fit well
in the iterative process when in each iteration we elaborate these
requirements further in close cooperation with all stakeholders.

Let’s consider each stage and its connection with other software
life cycle processes.

Elicitation
We may classify performance requirements into business, usability,
and technological requirements.

Business requirements come directly from the business and may
be captured very early in the project lifecycle, before design starts.
For example, a customer representative should enter 20 requests
per hour and the system should support up to 1,000 customer

page 61 Agile Record – www.agilerecord.com

representatives. Translated into more technical terms, the requests
should be processed in five minutes on average, throughput would
be up to 20,000 requests per hour, and there could be up to 1,000
parallel user sessions.

The main trap here is to immediately link business requirements
to a specific design, technology, or usability requirements, thus
limiting the number of available design choices. If we consider a
web system, for example, it is probably possible to squeeze all the
information into a single page or have a sequence of two dozen
screens. All information can be saved at once at the end, or each
page of these two dozen pages can be saved separately. We have
the same business requirements, but response times per page
and the number of pages per hour would be different.

While the final requirements should be quantitative and measur-
able, it is not an absolute requirement for initial requirements. Scott
Barber, for example, advocates that we need to gather qualitative
requirements first3. While business people know what the system
should do and may provide some numeric information, they are
usually not trained in requirement elicitation and system design.
If asked to provide quantitative and measurable requirements,
they may finally provide them based on whatever assumptions
they have about system’s design and human-computer interaction,
but quite often it results in wrong assumptions being documented
as business requirements. We should document real business
needs in the form in which they are available (perhaps as user
stories from the business point of view), and only then elaborate
them into quantitative and measurable requirements (during the
project’s iterations).

One often missed issue, as Scott Barber notes, is goals versus
requirements3. Most of response time “requirements” (and some-
times other kinds of performance requirements) are goals, not
requirements. They are something that we want to achieve, but
missing them won’t necessarily prevent deploying the system.

In many cases, especially for response times, there is a big dif-
ference between goals and requirements (the point when stake-
holders agree that the system can’t go into production with such
performance). For many corporate web applications, response time
goals are two to five seconds, and requirements may be somewhere
between eight seconds and a minute.

Determining what the specific performance requirements are is
another large topic that is difficult to formalize. Consider the ap-
proach suggested by Peter Sevcik for finding T, the threshold be-
tween satisfied and tolerating users. T is the main parameter of
the Apdex (Application Performance Index) methodology, providing
a single metric of user satisfaction with the performance of enter-
prise applications. Peter Sevcik defined ten different methods18.

■■ Default value (the Apdex methodology suggests 4 sec)

■■ Empirical data

■■ User behavior model (number of elements viewed / task
repetitiveness)

■■ Outside references

■■ Observing the user

■■ Controlled performance experiment

■■ Best time multiple

■■ Find frustration threshold F first, and calculate T from F (the
Apdex methodology assumes that F = 4T)

■■ Interview stakeholders

■■ Mathematical inflection point

The idea is the use of several of these methods for the same system.
If all come to approximately the same number, they give us T. While
this approach was developed for production monitoring, there is
definitely a strong correlation between T and the response time goal
(having all users satisfied sounds like as a pretty good goal), and
between F and the response time requirement. So the approach
probably can be used for getting response time requirements with
minimal modifications. While some specific assumptions like four
seconds for default or the F=4T relationship may be up for argu-
ment, the approach itself conveys the important message that
there are many ways to determine a specific performance require-
ment, and it would be better for validation purposes to get it from
several sources. Depending on your system, you can determine
which methods from the above list are applicable (or what other
methods may make sense in your particular case), get the metrics
and determine your requirements.

Usability requirements, mainly related to response times, are
based on the basic principles of human-computer interaction.
Many researchers agree that users lose focus if response times
are more than 8 to 10 seconds and that making the response time
faster than one to two seconds doesn’t help productivity much.
These usability considerations may influence design choices (such
as using several web pages instead of one). In some cases, us-
ability requirements are linked closely to business requirements;
for example, make sure that your system’s response times are not
worse than the response times of similar or of competitor’s systems.

As long ago as 1968, Robert Miller’s paper ‘Response Time in Man-
Computer Conversational Transactions’ described three threshold
levels of human attention15. Jakob Nielsen believes that Miller’s
guidelines are fundamental for human-computer interaction, so
they are still valid and not likely to change with whatever technol-
ogy comes next16. These three thresholds are:

■■ Users view response time as instantaneous (0.1-0.2 sec-
ond)

■■ Users feel they are interacting freely with the information
(1-5 seconds)

■■ Users are focused on the dialog (5-10 seconds)

Users view response time as instantaneous (0.1-0.2 second): Users
feel that they directly manipulate objects in the user interface. For
example, the time from the moment the user selects a column in
a table until that column highlights or the time between typing a
symbol and its appearance on the screen. Robert Miller reported
that threshold to be 0.1 seconds. According to Peter Bickford15 0.2

page 62 Agile Record – www.agilerecord.com

second forms the mental boundary between events that seem to
happen together and those that appear as echoes of each other5.

Although it is a quite important threshold, it is often beyond the
reach of application developers. That kind of interaction is provided
by operating system, browser, or interface libraries, and usually
happens on the client side, without interaction with servers (ex-
cept for dumb terminals, that is rather an exception for business
systems today).

Users feel they are interacting freely with the information (1-5
seconds): They notice the delay, but feel the computer is “working”
on the command. The user’s flow of thought stays uninterrupted.
Robert Miller reported this threshold as one-two seconds15.

Peter Sevcik identified two key factors impacting this threshold17:
the number of elements viewed and the repetitiveness of the task.
The number of elements viewed is, for example, the number of
items, fields, or paragraphs the user looks at. The amount of time
the user is willing to wait appears to be a function of the perceived
complexity of the request. The complexity of the user interface and
the number of elements on the screen both impact the thresholds.
Back in the 1960s through 1980s, the terminal interface was rather
simple and a typical task was data entry, often one element at a
time. So earlier researchers reported that one to two seconds was
the threshold to keep maximal productivity. Modern complex user
interfaces with many elements may have higher response times
without adversely impacting user productivity. Users also interact
with applications at a certain pace depending on how repetitive
each task is. Some are highly repetitive; others require the user to
think and make choices before proceeding to the next screen. The
more repetitive the task is, the better the expected response time.

That is the threshold that gives us response time usability goals
for most user-interactive applications. Response times above this
threshold degrade productivity. Exact numbers depend on many
difficult-to-formalize factors, such as the number and types of ele-
ments viewed or repetitiveness of the task, but a goal of two to
five seconds is reasonable for most typical business applications.

There are researchers who suggest that response time expecta-
tions increase with time. Forrester research8 suggests two seconds
response time; in 2006 similar research suggested four seconds
(both research efforts were sponsored by Akamai, a provider of
web accelerating solutions). While the trend probably exists, the
approach of this research was often questioned because they
just asked users. It is known that user perception of time may be
misleading. Also, as mentioned earlier, response time expectations
depends on the number of elements viewed, the repetitiveness
of the task, user assumptions of what the system is doing, and
UI showing the status. Stating a standard without specification of
what page we are talking about may be overgeneralization.

Users are focused on the dialog (5-10 seconds): They keep their
attention on the task. Robert Miller reported that threshold as
10 seconds15. Users will probably need to reorient themselves
when they return to the task after a delay above this threshold,
so productivity suffers.

Peter Bickford investigated user reactions when, after 27 almost
instantaneous responses, there was a two-minute wait loop for
the 28th time for the same operation. It took only 8.5 seconds for
half the subjects to either walk out or hit the reboot5. Switching
to a watch cursor during the wait delayed the subject’s departure
for about 20 seconds. An animated watch cursor was good for
more than a minute, and a progress bar kept users waiting until
the end. Bickford’s results were widely used for setting response
times requirements for web applications.

That is the threshold that gives us response time usability require-
ments for most user-interactive applications. Response times above
this threshold cause users to lose focus and lead to frustration.
Exact numbers vary significantly depending on the interface used,
but it looks like response times should not be more than 8 to 10
seconds in most cases. Still, the threshold shouldn’t be applied
blindly; in many cases, significantly higher response times may be
acceptable when an appropriate user interface is implemented to
alleviate the problem.

Analysis and specification
The third category, technological requirements, comes from chosen
design and used technology. Some technological requirements may
be known from the beginning if some design elements are given,
but others are derived from business and usability requirements
throughout the design process and depend on the chosen design.

For example, if we need to call ten web services sequentially to
show the web page with a three-second response time, the sum
of response times of each web service, the time to create the web
page, transfer it through the network and render it in a browser
should be below 3 seconds. That may be translated into response
time requirements of 200-250 milliseconds for each web service.
The more we know, the more accurately we can apportion overall
response time to web services.

Another example of technological requirements is resource con-
sumption requirements. For example, CPU and memory utilization
should be below 70% for the chosen hardware configuration.

Business requirements should be elaborated during iterations and
merge together with usability and technological requirements into
the final performance requirements, which can be verified during
testing and monitored in production. The main reason why we
separate these categories is to understand where the requirement
comes from. Is it a fundamental business requirement and the
system fails if we miss it, or is it a result of a design decision that
may be changed if necessary.

A significant difference between traditional and agile methods is
in specification. Traditional requirements engineering / architect’s
vocabulary is very different from the terminology used in develop-
ment, performance testing, or capacity planning. Performance and
scalability are often referred to as examples of Quality Attributes
(QA), a part of Non-functional Requirements (NFR).

In addition to specifying requirements in plain text, there are mul-
tiple approaches to formalize documenting of requirements. For

page 64 Agile Record – www.agilerecord.com

example, Quality Attribute Scenarios by The Carnegie Mellon Soft-
ware Engineering Institute (SEI) or Planguage (Planning Language)
introduced by Tom Gilb.

The QA scenario defines source, stimulus, environment, artifact,
response, and response measure4. For example, the scenario
may be that users initiate 1,000 transactions per minute randomly
under normal operations, and these transactions are processed
with an average latency of two seconds. For this example:

■■ Source is a collection of users.

■■ Stimulus is the random initiation of 1,000 transactions per
minute.

■■ Artifact is always the system’s services.

■■ Environment is the system state, normal mode in our
example.

■■ Response is processing the transactions.

■■ Response measure is the time it takes to process the
arriving events (an average latency of two seconds in our
example).

Planguage was suggested by Tom Gilb and may work better for
quantifying quality requirements19. Planguage keywords include:

■■ Tag: a unique identifier

■■ Gist: a short description

■■ Stakeholder: a party materially affected by the requirement

■■ Scale: the scale of measure used to quantify the statement

■■ Meter: the process or device used to establish location on
a Scale

■■ Must: the minimum level required to avoid failure

■■ Plan: the level at which good success can be claimed

■■ Stretch: a stretch goal if everything goes perfectly

■■ Wish: a desirable level of achievement that may not be at-
tainable through available means

■■ Past: an expression of previous results for comparison

■■ Trend: an historical range or extrapolation of data

■■ Record: the best known achievement

It is very interesting that Planguage defines four levels for each
requirement: minimum, plan, stretch, and wish.

There is no standard approach to specifying performance require-
ments in agile methods. Mostly it is suggested to present them
as user stories7,10 or as constraints13. And the difference is not
so much in the way the requirements are presented, both ways
rather use plain text. User stories assume using a user voice form.
Cohn, for example, suggests to use the “As a <type of user>, I
want <some goal>, so that <some reason>” template7 for user
stories (although he cautions that the user story template should
only be used as a thinking tool, it should not be used as a fixed

template). For constraints, both traditional expressions and user
voice forms may be used13.

The difference between user stories and constraints approaches
is not in performance requirements per se, but how to address
them during the development process. The point of the constraint
approach is that user stories should represent finite manageable
tasks, while performance-related activities can’t be handled as
such because they usually span multiple components and itera-
tions. Those who suggest to use user stories address that concern
in another way – for example, separating cost of initial compliance
and cost of ongoing compliance9.

Another question is how to specify response time requirements
or goals. Individual transaction response times vary, so aggregate
values should be used. For example, such metrics as average,
maximum, different kinds of percentiles, or median. The problem is
that whatever aggregate value you use, you lose some information.

Percentiles are more typical in SLAs (Service Level Agreements). For
example, 99.5 percent of all transactions should have a response
time of less than five seconds. While that may be sufficient for most
systems, it doesn’t answer all questions. What happens with the
remaining 0.5 percent? Do these 0.5 percent of transactions finish
in six to seven seconds, or do all of them timeout? You may need
to specify a combination of requirements: for example, average
four seconds and maximal 12 seconds, or average four seconds
and 99 percent below 10 seconds.

Moreover, there are different viewpoints for performance data that
need to be provided for different audiences. You need different
metrics for management, engineering, operations, and quality as-
surance. For operations and management, percentiles may work
best. If you do performance tuning and want to compare two dif-
ferent runs, average may be a better metric to see the trend. For
design and development, you may need to provide more detailed
metrics; for example, if the order processing time depends on the
number of items in the order, it may be separate response time met-
rics for one to two, three to 10, 10 to 50, and more than 50 items.

Often different tools are used to provide performance information
to different audiences; they present information in a different way
and may measure different metrics. For example, load testing tools
and active monitoring tools provide metrics for the used synthetic
workload that may differ significantly from the actual production
load. This becomes a real issue if you want to implement some
kind of process, such as ITIL Continual Service Improvement or Six
Sigma, to keep performance under control throughout the whole
system lifecycle.

Things get more complicated when there are many different types
of transactions, but a combination of percentile-based perfor-
mance and availability metrics usually works in production for
most interactive systems. While more sophisticated metrics may be
necessary for some systems, in most cases they make the process
overcomplicated and results difficult to analyze.

page 66 Agile Record – www.agilerecord.com

There are efforts to make an objective user satisfaction metric.
For example, Apdex, Application Performance Index18, is a single
metric of user satisfaction with the performance of enterprise ap-
plications. The Apdex metric is a number between 0 and 1, where
0 means that no users were satisfied, and 1 means all users were
satisfied. The approach introduces three groups of users: satisfied,
tolerating, and frustrated. Two major parameters are introduced:
threshold response times between satisfied and tolerating users T,
and between tolerating and frustrated users F. There probably is a
relationship between T and the response time goal, and between
F and the response time requirement. However, while Apdex may
be a good metric for management and operations, it is probably
too high-level for engineering.

Validation and verification
Requirements validation is making sure that requirements are valid
(although the term ‘validation’ is quite often used in the meaning
of checking against test results instead of verification). A good way
to validate a requirement is to get it from different independent
sources: if all numbers are about the same, it is a good indication
that the requirement is probably valid. Validation may include,
for example, reviews, modeling, and prototyping. Requirements
process is iterative by nature and requirements may change with
time, so to be able to validate them it is important to trace require-
ments back to their source.

Requirements verification is checking if the system performs ac-
cording to the requirements. To make meaningful comparisons,
both the requirements and results should use the same metrics.
One consideration here is that many load testing and many moni-
toring tools measure only server and network time. While end user
response times, which business is interested in and which is usually
assumed in performance requirements, may differ significantly,
especially for rich web clients or thick clients due to client-side
processing and browser rendering. Verification should be done
using load testing results as well as during ongoing production
monitoring. Checking production monitoring results against re-
quirements and load testing results is also a way to validate that
load testing was done properly.

Requirement verification presents another subtle issue: how to
differentiate performance issues from functional bugs exposed
under load. Often, additional investigation is required before you
can determine the cause of your observed results. Small anomalies
from expected behavior are often signs of bigger problems, and
you should at least figure out why you get them.

When 99 percent of your response times are three to five seconds
(with the requirement of five seconds) and 1 percent of your re-
sponse times are five to eight seconds, it usually is not a problem.
However, it probably should be investigated if this 1 percent fail or
have strangely high response times (for example, more than 30
sec) in an unrestricted, isolated test environment. This is not due
to some kind of artificial requirement, but is an indication of an
anomaly in system behavior or test configuration. This situation
often is analyzed from a requirements point of view, but it shouldn’t
be, at least not until the reasons for that behavior become clear.

These two situations look similar, but are completely different in
nature:

1.	 The system is missing a requirement, but results are
consistent. This is a business decision, such as a cost vs.
response time trade-off.

2.	 Results are not consistent (while requirements can even be
met). That may indicate a problem, but its scale isn’t clear
until investigated.

Unfortunately, this view is rarely shared by development teams
too eager to finish the project, move it into production, and move
on to the next project. Most developers are not very excited by the
prospect of debugging code for small memory leaks or hunting
for a rare error that is difficult to reproduce. So the development
team becomes very creative in finding “explanations”. For example,
growing memory and periodic long-running transactions in Java
are often explained as a garbage collection issue. That is false in
most cases. Even in the few cases when it is true, it makes sense
to tune garbage collection and prove that the problem went away.

Another typical situation is getting some transactions failed dur-
ing performance testing. It may still satisfy performance require-
ments, which, for example, state that 99% of transactions should
be below X seconds – and the share of failed transaction is less
than 1 percent. While this requirement definitely makes sense in
production, where we may have network and hardware failures, it
is not clear why we get failed transactions during the performance
test if it was run in a controlled environment and no system failures
were observed. It may be a bug exposed under load or a functional
problem for some combination of data.

When some transactions fail under load or have very long response
times in the controlled environment and we don’t know why, we
have one or more problems. When we have unknown problems,
why not trace them down and fix them in the controlled environ-
ment? It would be much more difficult in production. What if these
few failed transactions are a view page for your largest customer
and you won’t be able to create any order for this customer until
the problem is fixed? In functional testing, as soon as you find a
problem, you usually can figure out how serious it is. This is not
the case for performance testing: usually you have no idea what
caused the observed symptoms and how serious it is, and quite
often the original explanations turn out to be wrong.

As Richard Feynman said in his appendix to the Rogers Commission
Report on the Challenger space shuttle accident12, “The equip-
ment is not operating as expected, and therefore there is a danger
that it can operate with even wider deviations in this unexpected
and not thoroughly understood way. The fact that this danger did
not lead to a catastrophe before is no guarantee that it will not
the next time, unless it is completely understood.”

Summary
We need to specify performance requirements at the beginning
of any project for design and development (and, of course, reuse
them during performance testing and production monitoring). While
performance requirements are often not perfect, forcing stake-

page 67 Agile Record – www.agilerecord.com

holders just to think about performance increases the chances
of project success. Agile methods provide a unique opportunity
to verify performance requirements early and track performance
through all iterations.

What exactly should be specified – goal vs. requirements (or both),
average vs. percentile vs. APDEX, etc. – depends on the system
and environment. Whatever it is, it should be elaborated into
quantitative and measurable in the end. Making requirements
too complicated may hurt. We need to find meaningful goals and
requirements, not invent something just to satisfy some bureau-
cratic process.

If we define performance requirements in the beginning of the
project, they become the backbone of the performance engineer-
ing process and we can use and elaborate them throughout all
iterations and track our progress from the performance engineer-
ing point of view. Continuing to trace them in production creates
a performance feedback loop providing us with input to system
maintenance and future development.

References
1.	 Agile Non-Functional Requirements. 2009.

http://tynerblain.com/blog/2009/02/10/agile-non-func-
tional-reqs/

2.	 Ambler, S.W. Beyond Functional Requirements On Agile
Projects. Dr.Dobb’s, 2008.
http://www.drdobbs.com/architecture-and-de-
sign/210601918

3.	 Barber, S. Get performance requirements right – think like
a user, Compuware, 2007.
http://www.perftestplus.com/resources/requirements_
with_compuware.pdf

4.	 Bass L., Clements P., Kazman R. Software Architecture in
Practice, Addison-Wesley, 2003.
http://etutorials.org/Programming/Software+architecture+
in+practice,+second+edition

5.	 Bickford P. Worth the Wait? Human Interface Online, View
Source, 10/1997.
http://web.archive.org/web/20040913083444/http://de-
veloper.netscape.com/viewsource/bickford_wait.htm

6.	 Cohn, M. Estimating Non-Functional Requirements. 2011.
http://www.mountaingoatsoftware.com/blog/estimating-
non-functional-requirements

7.	 Cohn, M. Non-functional Requirements as User Stories.
2008.
http://www.mountaingoatsoftware.com/blog/non-function-
al-requirements-as-user-stories/

8.	 eCommerce Web Site Performance Today. Forrester Con-
sulting on behalf of Akamai Technologies, 2009.
http://www.akamai.com/html/about/press/releas-
es/2009/press_091409.html

9.	 Hazrati, V. Nailing Down Non-Functional Requirements.
InfoQ, 2011.
http://www.infoq.com/news/2011/06/nailing-quality-
requirements

10.	 Howard, K. Handling Non-Functional Requirements On an
Agile Project. Agile 2009.
http://www.slideshare.net/kenhoward01/handling-non-
functional-requirements-on-an-agile-project

11.	 Guide to the Software Engineering Body of Knowledge
(SWEBOK). IEEE, 2004.
http://www.computer.org/portal/web/swebok

12.	 Feynman R.P. Appendix F – Personal observations on the
reliability of the Shuttle.
http://science.ksc.nasa.gov/shuttle/missions/51-l/docs/
rogers-commission/Appendix-F.txt

13.	 Leffingwell D, Shriver R.Nonfunctional Requirements (Sys-
tem Qualities) Agile Style. Agile 2010.
http://www.theagileengineer.com/public/Home/En-
tries/2010/8/12_Agile_2010_Presentation__Non_Func-
tional_Requirements_(Qualities),_Agile_Style.html

14.	 Mailbox Server Processor Capacity Planning.
http://technet.microsoft.com/en-us/library/ee712771.aspx

15.	 Miller, R. B. Response time in user-system conversational
transactions, In Proceedings of the AFIPS Fall Joint Com-
puter Conference, 33, 1968, 267-277.

16.	 Nielsen J. Response Times: The Three Important Limits,
Excerpt from Chapter 5 of Usability Engineering, 1994.
http://www.useit.com/papers/responsetime.html

17.	 Sevcik, P. How Fast Is Fast Enough, Business Communica-
tions Review, March 2003.
http://www.bcr.com/architecture/net-
work_forecasts%10sevcik/how_fast_is_fast_
enough?_20030315225.htm

18.	 Sevcik, P. Using Apdex to Manage Performance, CMG,
2008.
http://www.apdex.org/documents/Session318.0Sevcik.pdf

19.	 Simmons E. Quantifying Quality Requirements Using Plan-
guage, Quality Week, 2001.
http://www.clearspecs.com/downloads/ClearSpec-
s20V01_Quantifying%20Quality%20Requirements.pdf

Alex Podelko
For the last fifteen years
Alex Podelko has worked
as a performance engineer
and architect for several
companies. Currently he
is Consulting Member of
Technical Staff at Oracle, re-
sponsible for performance
testing and optimization
of Hyperion products. Alex

serves as a director for the Computer Measurement
Group (CMG) http://cmg.org, a volunteer organization
of performance and capacity planning professionals. He
blogs at http://alexanderpodelko.com/blog and can be
found on Twitter as @apodelko.

> About the author

