
Software systems can be as complex as life in a coral reef,
and, like such ecosystems, software systems tend to grow
rapidly. The literature is full of explanations about how
to design scalable software, what best practices and
design patterns to use, and even how to build models to
predict performance.

While it is important to create scalable software, theo-
ries alone can’t guarantee a required level of perform-
ance. Testing multiuser applications under realistic as
well as stress loads remains the only way to ensure appro-
priate performance and reliability in production.

Load, performance, stress, scalability and reliability
are all terms used to describe this type of testing. Despite
efforts to define clear distinctions among them, none of
these definitions is widely accepted. There are no clear
distinctions, because these terms describe testing from
different points of view.

Without delving too deeply into details, I would sug-
gest these definitions:

• Load testing is testing that involves applying a load to
the system.

• Performance testing evaluates how well the system
performs.

• Stress testing looks at how the system behaves under
a heavy load.

• Scalability testing investigates how well the system
scales as the load and/or resources are increased.

Quite often, similar processes are used in all these

22 • Software Test & Performance OCTOBER 2005

Alexander Podelko is principal performance engineer at Hyperion
Solutions in Stamford, Conn. He holds a Ph.D in computer science from
Gubkin University and an MBA from Bellevue University. He can be
contacted at Alexander_Podelko@hyperion.com.

Load Testing for the Diverse Environment
Modeling Multiple
Users in a Realistic
Way Requires A
Broad Approach

Here’s how to simulate workloads

using different methods of load

generation. By Alexander Podelko

mailto:alexander_podelko@hyperion.com

OCTOBER 2005 www.stpmag.com • 23

kinds of testing, and a term to describe the type of test-
ing can be chosen depending on what looks most impor-
tant in the context.

If you run a test simulating many users and measuring
response times, what should you name your test? You can
probably refer to it as either the load test or the perform-
ance test, and either term would be correct. However,

these are not synonyms; rather, they describe different
facets of the test.

The term “load testing” is used in this article because
we are investigating ways to create load. Everything men-
tioned here applies to performance, stress, scalability,
reliability and other kinds of testing, so long as the sys-
tem is tested by applying load (while, for example, doing
reliability testing by switching off the power is another
story).

Based on classic functional testing from one side, and
on system performance analysis from another, load test-
ing is emerging as an engineering discipline of its own.
Quite often, load testing is combined with tuning, diag-
nostics and capacity planning.

Sometimes it is difficult to separate performance and
load testing. For example, performance testing of a poor-
ly tuned system isn’t very meaningful. The typical load
testing process is depicted in Figure 1.

We explicitly define two different steps here: “define
load” and “create test assets.” The “define load” step
means the logical description of the load we want to
apply (for example, a group of users who log in, navigate
to a random item in the catalog, add it to the shopping
cart, pay and then log out, with an average 10-second
“think time” between each pair of actions). The “create
test assets” step means to convert the logical description
into something that will physically create load during the
“run tests” step. While for manual testing this can just be
a description given to each tester, usually it is something
else—a program or a script.

Before you can move forward from “define load” to
“create test assets,” you need to decide how you are going
to generate the load. Load generation can be a simple
technical step when you know how to do it for your sys-
tem (compared with other, more complicated steps like
collecting requirements, defining load or analyzing
results). Unfortunately, load generation quite often is a
challenging task for a new system, and it may be down-
right impossible in the available time frame. It’s impor-
tant to understand all the possible options here; a single
approach may not work in all situations. The main choic-
es are to generate load manually (this is really an option
only if you have few users), use a load testing tool (soft-
ware or hardware) or create a program to apply loads.
Many tools allow you to use different ways of
recording/playback and programming.

In this article I will discuss how to make realistic deci-
sions about which approach and which tool may be most
appropriate for any given situation. The material is based
on experience involving business applications, so some

P
ho

to
gr

ap
h

by
 L

in
da

 B
ai

r

e Diverse Environment

24 • Software Test & Performance OCTOBER 2005

limitations may exist when dealing
with other environments.

Record and Playback:
Virtual Users
The mainstream approach to load
testing (at least for distributed busi-
ness and Internet
applications) is to
record the communi-
cation between two
tiers of the system and
then play back the
automatically created
script (usually after
proper parameteriza-
tion). The tools used
are usually referred to
as “load testing tools,”
and users simulated by
such tools are usually
referred to as “virtual
users” (see Figure 2).
The real client-side
software isn’t neces-
sary to replay the
scripts, so the number
of simulated virtual
users can be high; this
figure is theoretically
limited only by the available hard-
ware (each tool has specific hard-
ware requirements that will depend
on the type and complexity of
scripts).

Both recording and playback
occur between the tiers, so the pro-

tocol used between the client and
the server is the most important
aspect.

Other factors, such as the lan-
guage used in developing the sys-
tem, the platform the server is
deployed on, etc., are usually irrele-

vant for scripting,
although they can give
some hints about the
protocol used for com-
munication.

The process is pretty
straightforward when
you test a simple Web
site or a simple Web
application with a thin
client. Even a beginner
in load testing can
quickly create a few
scripts and run tests.
That’s one reason why
the record-and-play-
back approach is so
popular.

However, there is a
trap in that easiness,
too: Load testing really
embraces much more.
Load testing results

should be validated for correctness
(if you don’t see errors with the load
testing tool, that doesn’t always
mean it works properly) and realism
(using unrealistic scenarios is the
easiest way to get misleading
results).

Moreover, load generation is only
one step in load testing; there are
many other important parts (such as
getting requirements or results
analysis), as well as related activities
(tuning, diagnostics).

Unfortunately, scripting can be
challenging even for a Web applica-
tion, not to mention other proto-
cols. Recording a script and making
it work can be a serious research
task, and can often include many
try-and-fail iterations. A good load
testing tool can help if it supports
your protocol.

Load Testing Tools
There are a few tools supporting the
record-and-playback approach for a
variety of protocols. Usually, they are
the most mature commercial prod-
ucts. Such enterprise-level load test-
ing tools have many important fea-
tures. The following features could
be considered typical:

• The ability to record scripts
automatically for different pro-
tocols

• A powerful scripting language
• Simulation of numerous users

(limited mainly by hardware)
• The ability to coordinate test

execution from several different
computers

• Centralized test management
and results analysis

• Support for different environ-
ments

• The ability to monitor environ-
ments

• The ability to use other ap-
proaches to load generation,
including the ability to simulate
GUI users as well as virtual users,
and the ability to extend the
scripting language and to make
external calls

• The ability to interface with
other development and test
software: requirements gather-
ing, test management, defect
tracking, configuration manage-
ment, etc.

The list of supported features
varies from tool to tool. Examples of
powerful multiprotocol tools are
Mercury LoadRunner (www.mercury
.com), Segue SilkPerformer (www.
segue.com), IBM Rational Perform-
ance Tester (www.ibm.com/software
/rational) and Compuware QALoad
(www.compuware.com). For a Web-

1.THE LOAD TESTING PROCESS

•
Manual load

generation isn’t

a real option

if you want to

simulate a large

number of users.

•

LOAD TESTING

http://www.mercury.com
http://www.segue.com
http://www.ibm.com/software/rational
http://www.compuware.com

OCTOBER 2005 www.stpmag.com • 25

only commercial tool, Empirix e-
Load (www.empirix.com), having
some features of enterprise-level
load testing tools, is probably the
best-known example.

These five vendors accounted for
95 percent of the worldwide market
for distributed automated software
quality commercial tools in 2003, ac-
cording to market researcher IDC.

Many other specialized tools are
available, especially for Web tech-
nologies. If the number of technolo-
gies you’ll use is limited, it makes
sense to check out such tools (it was-
n’t a real option for us, considering
the multiple technologies we have
been working with). Most of them
can be found at www.softwareqatest
.com/qatweb1.html and at www
.testingfaqs.org/t-load.html.

Not all the tools listed at these
sites support record and playback,
and some require programming
scripts from scratch.

The recording abilities of various
tools differ significantly. Enterprise-
level load testing tools usually can
work in more sophisticated environ-
ments and can do more correlation
automatically (such as getting real
cookies, session IDs, etc., from the
server, instead of recorded values).

Another area of differentiation
among tools involves the infrastruc-
ture services they include (test coor-
dination, results analysis, monitor-
ing, integration with other tools,
etc.). Most inexpensive or free tools,
unfortunately, are weak in this
regard.

One more tool worth mentioning
is Microsoft’s Application Center
Test (ACT), which comes with Visual
Studio, although it is rather limited
in functionality. The Visual Studio
2005 Team System for Software
Testers, in beta now, will include a

more powerful load testing tool.
There are many open source tools

available as well. For example, the fol-
lowing link currently includes some
21 tools: www.opensourcetesting.org
/performance.php.

Unfortunately, most open source
tools have limited functionality.
Probably OpenSTA and Apache

JMeter are the best-known and most
mature open source tools. OpenSTA
(www.opensta.org) is a Web load test-
ing tool originally developed as a
commercial tool by Cyrano. Open-
STA stands for Open Systems Testing
Architecture. Another branch of the
Cyrano code is a commercial tool,
QuotiumPRO from Quotium (www
.quotium.com).

Apache JMeter (jakarta.apache.org
/jmeter) is a 100% Pure Java tool for
load and performance testing of
HTTP and FTP servers, as well as arbi-
trary database queries (via JDBC).

Probably the most ambitious
open source project is the Eclipse
Test & Performance Tools Platform
(www.eclipse.org/tptp/index.html).

Load testing appliances (for ex-
ample, Spirent Avalanche) can be
useful for simulating a big number
of simple Web users. Scripting is
usually limited with these products.
It is interesting that Spirent is a part-

ner of Mercury, and it positions its
hardware load generator as a com-
plement to Mercury’s LoadRunner
to create a heavy but simple back-
ground load.

Choosing a Load Testing Tool
Generally, it would be wrong to say
that any one tool is better than anoth-
er, but one tool can certainly fit better
in a particular environment than
another. Many factors beyond func-
tionality can affect the choices you’ll
make. Here are some:

• Familiarity with the tool and
other tools from that vendor

• Familiarity with the language
that a tool uses (many are based
on standard languages such as C,
Basic or Java)

• Support
• Price
• The vendor’s perspective

On the other hand, it’s always
good to keep in mind that a load test-
ing tool is only a tool. While you prob-
ably need a sophisticated set of tools
to create a luxury furniture set, you
only need a hammer to nail a picture
hanger to the wall.

Limitations
We have been using the record-and-
playback approach in most of our
projects, but unfortunately, it has sev-
eral serious limitations:

• It usually doesn’t work for testing
components.

• Each particular load testing tool
supports a limited number of
technologies.

• The workload validity in the case
of sophisticated logic on the
client side is not guaranteed.

These limitations are usually not
problems in the case of simple Web
applications using a browser as a
client, but they can become a seri-

2: RECORD AND PLAYBACK: VIRTUAL USERS

LOAD TESTING

3: RECORD AND PLAYBACK: GUI USERS

http://www.empirix.com
http://www.softwareqatest.com/qatweb1.html
http://ww.testingfaqs.org/t-load.html
http://www.opensourcetesting.org/performance.php
http://www.opensta.org
http://www.quotium.com
http://jakarta.apache.org/jmeter
http://www.eclipse.org/tptp/index.html

26 • Software Test & Performance OCTOBER 2005

ous problem when you need to test
different protocols across the whole
software life cycle.

Each load testing tool supports a
limited number of technologies
(protocols); new or exotic technolo-
gies are not usually on the list.
Vendors of load test tools add new
supported protocols continually, but
we often do not have time to wait for
a specific protocol to be added—as
soon as we get a new product, we
need to test it.

For example, we were not able to
use recording for the Server Mes-
sage Block (SMB) protocol, which
was later succeeded by the Common
Internet File System (CIFS) proto-
col. It is used when two Microsoft
network systems communicate over
a network. Its commands are embed-
ded within the transport protocols,
like TCP/IP.

Back in 1999, we weren’t able to
use recording for Microsoft DCOM
(Distributed Component Object
Model), used for communication
between two remote COM compo-
nents, or Java RMI (Remote Method
Invocation), which is used for com-
munication between two remote
Java programs.

Although some toolmakers claim
their products support these proto-
cols, that support may not work in
all environments. Script recording
and parameterization is still far from
being straightforward, and it often
requires a good deal of knowledge
about system internals. The question
of workload validation is also
opened. An illustration of possible
problems is shown in the code
below. Code Listing 1 shows an
example of recording RMI protocol.

Listing 2 shows the real code produc-
ing this RMI communication.

The client polls the server every
300 ms to check the status and to
get the result when it is ready.
Without having any knowledge of
the real code, it will be almost
impossible for you to parameterize
the script properly—it just calls
getStatus three times and then calls
getInstance, even if the result won’t
be ready yet.

It is possible, therefore, that the
record-and-playback approach won’t
work in your environment, or that
using the approach will be too time-
consuming and inflexible (as hap-
pened many times for us). When you
encounter such problems, it’s a good
time to check out some alternatives
and add them to your arsenal.

Record and Playback:
GUI Users
Another type of tool that uses the
recording approach records all the
actions of a real user: mouse moving
and clicking and keystrokes. Such
tools are usually used for functional
and regression testing. Examples
are Mercury WinRunner, Mercury
QuickTest Professional and Rational
Robot. These tools record and play
back communication between the
user and the client GUI. Virtual
users, which are simulated by means
of such tools, are often referred to
as “GUI users” (see Figure 3).

These tools simulate users in the
most accurate way: They really just
take the place of an actual user. You
get end-to-end response times iden-
tical to what real users would see.

For load testing, these GUI tools
are usually used in conjunction with
the load testing tool from the same
toolmaker, which coordinates the
execution of multiple GUI scripts
and collects the results.

The main problem with such
tools is that they require a machine
for each user, so it’s almost impossi-
ble to use them for a large number
of users—you’ll need the same num-
ber of physical boxes as the number
of users being simulated. Some tools
have the ability to run one user per
Windows Terminal Server session,
which significantly increases the
scalability of that solution (probably
up to the low hundreds of users,
from a practical point of view).

Another workaround, from Mer-
cury, for example, is to use the low-
level graphical Citrix protocol. Still,
this is a significantly less scalable ap-
proach than record and playback
with virtual users, because you’ll need
to have full working client software,
which adds significant overhead on
load generating machines.

These tools also could be useful in
combination with virtual users to ver-
ify VU scripts, to get end-to-end tim-
ing, or to increase the number of use
cases during load testing reusing
functional testing scripts (if, of
course, the functional testing tool
matches the load testing tool).

Manual Load Generation
Manual load generation isn’t a real
option if you want to simulate a large

Listing 1
_integer =

_ireportserver.executeJob(_designjobobject);
_ireportserver.getStatus(new Integer(3));
_ireportserver.getStatus(new Integer(3));
_ireportserver.getStatus(new Integer(3));
_iinstance = _ireportserver.getInstance

(new Integer(3));

Listing 2
joID = poReportServer.executeJob(djo);
bStatus = true;
while (bStatus) {

bStatus = poReportServer.getStatus (joID);
Thread.sleep(300); }

poReportServer.getInstance(joID);

RMI CODE EXAMPLES

LOAD TESTING

OCTOBER 2005 www.stpmag.com • 27

number of users. Still, in some cases
it can be a good option when you
need load from a few users and don’t
have proper tools available, or if you
face big problems with scripting.
Sometimes a manual test can be a
good option in earlier stages of test-
ing—for example, to verify that the
system can support concurrent work,
or to diagnose locking problems.

One of the concerns to keep in
mind with manual testing is that
even when each user follows an
exact scenario, time variations can
occur. The tests are not exactly
reproducible, due to variations in
human input times, so this approach
can hardly be recommended as a
long-term solution, even when few
users are involved.

It still could be useful to run one

or a few users manually in parallel to
virtual users’ simulated workload, so
as to better understand what real
users might experience. That’s a
good way to verify test results: If man-
ual response times match what you
see for scripts (keep in mind that vir-
tual users don’t have client-side over-
head), you have one more proof that
your scripts are correct.

Programming
Programming is another approach
to load generation. A straightfor-
ward way to create a multiuser work-
load is to develop a special program
to generate that workload. Such a
program will require access to the
API or the source code, as well as
some programming work. This
approach is often used to test com-
ponents. No special testing tool is
necessary.

In some simple cases, program-
ming could be the best solution
from a cost perspective, especially if
there is no purchased load testing
tool. A starting version could be
quickly created by a programmer
who is familiar with the API.

A simple test harness, for exam-
ple, could spawn some threads, and
each thread, simulating a real user,
could include the same sequence of
API calls as the real software
employs for that use case. Such a
harness should work if the API
works. You don’t need to worry
about what protocol is used for
communication.

We have used this approach suc-
cessfully for component load testing
in several projects, and, of course,
this approach is widely used by
developers. However, efforts to up-
date and maintain the harness
increase drastically as soon as you

need to add such features as com-
plex user scenarios, centralized test
management and results analysis,
and coordinated test execution from
several computers.

If you have numerous products,
as we did, you really need to create
something akin to a commercial
load testing tool to ensure that all
necessary performance and reliabili-
ty testing will be done. That proba-
bly isn’t the best choice for a small
group of testers.

Custom Load Generation
Originally, we used the record-and-
playback approach (load testing
tools), or we created special pro-
grams to generate workload (custom
test harnesses) in cases where
recording didn’t work. Since we
experienced numerous problems
applying these two approaches to
new products utilizing the latest
technologies, we came to favor a
mixed approach: Develop light-
weight, custom software clients
(client stubs) to create the proper
workload, but use powerful com-
mercial tools to manage them and
analyze the results.

The implementation of this
approach (we called it “custom load
generation”; see Figure 4) depends
on the particular load testing tool
being used.

For the Rational load testing tool
and Mercury’s LoadRunner, the
original way was to create an exter-
nal C DLL (or shared library for
Unix) and then call functions
defined in the DLL from the tool’s
native scripting language (VU script
for Rational TestStudio, Vuser script
for Mercury LoadRunner; both are
C-like scripting languages).

Another way to implement this

LOAD TESTING

P
ho

to
gr

ap
h

by
 J

ay
 A

dk
in

s

4: CUSTOM LOAD GENERATION

28 • Software Test & Performance OCTOBER 2005

approach appeared in the later ver-
sions of load testing tools: creating a
script in a programming language
(such as Java or Visual Basic) with
the help of templates and special
tool-supplied functions.

There are some significant advan-
tages to the custom load generation
approach:

• It eliminates your dependency
on a third-party tool’s ability to
support specific protocols.

• It leverages all the features of
commercial tools and allows the
use of them as a test harness.

• It takes away the need to imple-
ment multiuser support, data
collection and analysis, report-
ing, scheduling, etc. This is in-
herent in the third-party tool.

• It ensures that performance
testing of current or future appli-
cations can be done for any
protocol used to communicate
among different tiers. In some
instances it is the only way to
generate load (as it was for SMB,
DCOM and RMI in our case)
without developing a full-scale
custom harness.

However, there are also some
important considerations to keep in
mind for the custom load generation
approach:

• It requires access to the API or
source code.

• It requires additional program-
ming work.

• It requires an understanding of

system internals.
• The client environment should

sit on all of the load generator
machines.

• It requires a commercial tool
license covering the necessary
number of virtual users.

• The lowest-level transaction that
can be measured is an external
function.

• It usually requires more re-
sources on client machines
(because there is some custom
software).

• The results should be carefully
interpreted to ensure that there
is no contention among client
stubs.

Custom load generation has an
additional advantage: It allows the
workload to be managed in a more
user-friendly way, and it simplifies
parameterization in some cases.

For example, if you record sock-
et-level traffic, recording and para-
meterization could take a lot of
time. And if you need to change
the workload (for example, use
new queries), it is almost impos-
sible to change the parameter-
ized script to reflect the new
workload. You will probably
need to re-record and re-para-
meterize the script.

When you implement cus-
tom load generation, the real
query could be read from an
input file. Changing the query
becomes very easy: You just

change the input file without mak-
ing any changes in the script.

The same is true if different
builds of the software are tested.
Small changes could impact a low-
level-protocol script, but the API is
usually more stable. Just install the
new build and run the test. There is
no new recording and parameteriza-
tion needed.

Custom Load Generation
Examples
All of the examples below are for
Mercury LoadRunner, just because
it is the tool we use the most. Similar
things can be done with the Rational
performance tool and probably
some other tools.

The first example is a multidi-
mensional analytical engine. Origin-
ally, the main way to access it was
through the C API. Many products
use it, including the Excel add-in. It
is possible to record a script using
the Winsock protocol (a low-level
protocol recording all network com-
munication); Winsock scripts are
quite difficult to parameterize and
verify.

Listing 3 shows a small extract of
a correlated Winsock script. Another
part of the script includes the content
of each sent or received buffer, as
seen in Listing 4.

The script consists of many pages
of such binary data. We have a full
methodology for how to correlate
such scripts, but it is extremely time-
consuming (you should go through
all pages of the binary data and
replace hard-recorded handles with
parameters).

Scripts are almost impossible to
parameterize; if you need to change
anything in the query (for example,
run it for another city), you need to

Listing 3
lrs_create_socket("socket0", "TCP", "LocalHost=0",

"RemoteHost=ess001.hyperion.com:1423", lrsLastArg);
lrs_send("socket0", "buf0", LrsLastArg);
lrs_receive("socket0", "buf1", LrsLastArg);
lrs_send("socket0", "buf2", LrsLastArg);
lrs_receive("socket0", "buf3", LrsLastArg);
lrs_save_searched_string("socket0", LRS_LAST_RECEIVED, "Handle1",

"LB/BIN=\\x00\\x00\\v\\x00\\x04\\x00", "RB/BIN=\\x04\\x00\\x06\\x00\\x06", 1, 0, -1);
lrs_send("socket0", "buf4", LrsLastArg);
lrs_receive("socket0", "buf5", LrsLastArg);
lrs_close_socket("socket0");

Listing 4
send buf22 26165
"\xff\x00\xf0\a"
"\x00\x00\x00\x00\x01\x00\x00\x00\x01\x00\x03\x00"
"d\x00\b\x00"
"y'<Handle1>\x00"
"\b\r\x00\x06\x00\f\x00\x1be\x00\x00\r\x00\xd6\aRN"
"\x1a\x00\x06\x00\x00\x00\x00\x00\x00\x00\x00\b"
"\x00\x00\x00\xe7\x00\x00\x01\x00\x03\x00\x04\x00"
"\x10\x00\xcc\x04\x05\x00\x04\x00\x80\xd0\x05\x00\t"
"\x00\x02\x00\x02\x00\b\x00<\x00\x04"
"FY04\aWorking\tYearTotal\tELEMENT-F\tProduct-P"
"\x10<entity>\t\x00\x02\x00"

CORRELATED WINSOCK SCRIPT

Listing 5
lr_load_dll("c:\\temp\\lr_ess.dll");
pCTX = Init_Context();
hr = Connect(pCTX, "ess01", "user001","password");
…
lr_start_transaction("Mdx_q1");
sprintf(report, "SELECT %s.children on columns,

%s.children on rows FROM Shipment WHERE
([Measures].[Qty Shipped], %s, %s)",
lr_eval_string("{day}"), lr_eval_string("{product}"),
lr_eval_string("{customer}"),
lr_eval_string("{shipper}"));

hr = RunQuery(pCTX, report);
lr_end_transaction("Mdx_q1",LR_AUTO);

USING AN EXTERNAL DLL

continued on page 30 >

LOAD TESTING

http://www.S-3con.com

start again from scratch.
For this reason, an external DLL

was made for major functions. Listing
5 shows a script using this external
DLL. This is almost the whole script
(except for a few technical lines),
instead of many pages of binary data.

There is an MDX query there,
which is generated using day, prod-
uct, customer and shipper as param-
eters, so we hit the different spots of
the database and avoid caching
effects. We can create scripts for
each function that was included in
the DLL, those covering the main
functionality of
the product.

Another ex-
ample is a mid-
dleware prod-
uct: software
without a GUI
interface, only
an administra-
tive console.

We were giv-
en functional
test scripts in
Java from the
QE group. The
m i d d l e w a r e
product can use
HTTP (with
major applica-
tion servers) or TCP/IP (as a stand-
alone solution). It’s possible to run a
test script and record HTTP traffic
between the script and the server. It
is HTTP, but it is just binary data
inside the HTTP request body. You
can’t do anything with the scripts;
you can only play them back as is.
You need to start from scratch if you
want to make a small change.

The solution that we finally settled
on was the creation of LoadRunner
scripts directly from the test scripts.
Just put Java code inside the template
and add tool-specific statements
(such as lr.start_transaction and
lr.end_transaction). Listing 6 shows
how the beginning of the script looks.

Why not create a simple program
that will start many such scripts in
parallel? It is an option, but you’ll
need to implement all of the infra-
structure (coordination, results analy-
sis, monitoring, etc.) yourself. Such
work is usually not the right choice
for a small group working with sever-
al different products, but it does

make sense when your tools provide a
diverse infrastructure.

Unfortunately, as noted above,
you’ll find that most of the inexpen-
sive or free tools are weak in provid-
ing the necessary elements for this.

Settle on a Strategy
Of course, there is no single best
approach to load generation, nor is
there a best load testing tool.
Various approaches or tools may
prove better or worse in a particular
context. It is quite possible that a
combination of tools and approach-
es will be necessary in a complex

environment.
C h o o s i n g

the right strate-
gy for load gen-
eration can be a
c h a l l e n g i n g
task. As you dig
into the details
of the various
tools you might
use for a partic-
ular project, try
to see the big
picture of what
is available, as
well as what can
be used for this
and for other
projects.

Evolve and Adjust
In this article I have described our
experience with multiuser workload
simulation using a number of differ-
ent methods of load generation,
including record and playback, pro-
gramming and custom load genera-
tion. The latter approach involves
implementing lightweight custom
client software and running it with a
commercial load testing tool, which
is used as a harness to collect, ana-
lyze and report results, as well as to
manage test execution.

Select the set of methods that
seems most appropriate to you, and
then evolve and adjust your approach
to yield the best results.

Remember, software systems
often operate in environments that
are as diverse and scalable as a coral
reef. Testing them under realistic
conditions that reflect all that diver-
sity is the only way you can ensure
that they will perform reliably when
deployed. ý

LOAD TESTING

Listing 6
import lrapi.lr;
import com.essbase.api.base.*;
import com.essbase.api.session.*;
…
public int action() {
String s_userName = "system";
String s_password = "password";
lr.enable_redirection(true);
try {
lr.start_transaction("01_Create_API_instance");
ess = IEssbase.Home. create

(IEssbase.JAPI_VERSION);
lr.end_transaction

("01_Create_API_instance", lr.AUTO);
lr.start_transaction("02_SignOn");
IEssDomain dom = ess.signOn(s_userName,

s_password, s_domainName, s_prefEesSvrName,
s_orbType, s_port);

lr.end_transaction("02_SignOn", lr.AUTO);

A MIDDLEWARE SOLUTION

30 • Software Test & Performance OCTOBER 2005

< continued from page 28

http://www.logigear.com

