
June 2012

IS
SN

 18
66

-5
70

5 
 

 
w

w
w

.te
st

in
ge

xp
er

ie
nc

e.
co

m
 

 
fr

ee
 d

ig
ita

l v
er

si
on

 
 

pr
in

t v
er

si
on

 8
,0

0 
€ 

pr
in

te
d 

in
 G

er
m

an
y

18

Test Center of Excellence
How can it be set up?

The Magazine for Professional Testers



6 The Magazine for Professional Testers www.testingexperience.com

Load Testing: Respect the 
Difference

by Alexander Podelko

Talking about Test Centers of Excellence, it is important to remem-
ber that the skills and processes needed for load testing are quite 
different from functional testing. Often that results in creating 
a separate Performance Center of Excellence, but regardless of 
specific organizational structure, it is important to understand 
and respect the difference. 

This article tries to contrast load testing with functional testing 
and highlights points that are often missed by people moving into 
load testing from functional testing or development. Applying the 
best practices and metrics of functional testing to load testing 
quite often results in disappointments, unrealistic expectations, 
sub-optimal test planning and design, and misleading results. 
While people who were involved in load testing or performance 
analysis may find many statements below to be trivial, it still 
may be beneficial to highlight the differences when we discuss 
processes and skills needed for Test Centers of Excellence. 

Testing multi-user applications under realistic as well as stress 
loads remains the main way to ensure appropriate performance 
and reliability in production. There are many terms defining such 
kind of testing: load, performance, stress, scalability, concurrency, 
reliability, and many others. There are different (and sometimes 
conflicting) definitions of these terms, and these terms describe 
testing from somewhat different points of view, so they are not 
mutually exclusive. 

While each kind of performance testing may be somewhat differ-
ent, in most cases they use the same approach: applying multi-
user synthetic workload to the system. We mostly use the term 
“load testing” further in that article because we try to contrast 
multi-user load testing with single-user functional testing. Every-
thing mentioned here applies to performance, stress, scalability, 
reliability and other kinds of testing as far as these features are 
tested by applying load. 

Load Testing Process Overview

Load testing is emerging as an engineering discipline of its own, 
based on “classic” testing from one side, and system performance 
analysis from another side. A typical load testing process is shown 
in figure 1.

Fig.1 Load testing process

We explicitly define two different steps here: “define load” and 
“create test assets”. The “define load” step (sometimes referred 
to as workload characterization or workload modeling) is a logi-
cal description of the load we want to apply (like “that group 
of users login, navigate to a random item in the catalog, add it 
to the shopping cart, pay, and logout with average 10 seconds 
think time between actions”). The “create test assets” step is the 
implementation of this workload, and conversion of the logical 
description into something that will physically create that load 
during the “run tests” step. While for manual testing that can be 
just the description given to each tester, usually it is something 
else in load testing – a program or a script.

Quite often load testing goes hand-in-hand with tuning, diagnos-
tics, and capacity planning. It is actually represented by the back 
loop on the fig.1: if we don’t meet our goal, we need optimize the 
system to improve performance. Usually the load testing process 
implies tuning and modification of the system to achieve the goals.

Modify System

Collect Requirements

Define Load

Create Test Assets

Run Tests

Analyze Results

Done

Goals are not met

Goals are met

iSQI® is your one-stop-agency for learning resources, professional trainings for the most important inter-
national standards and the most convenient certification services in the world. 

Every exam scheduled between July 1st and September 30th 2012 not only allows you to enjoy our re-
nowned certification examination services. In addition, you will get free access to the Learntesting e-book 
Library, the best place for professional literature on testing, QA and related subjects on the net!

Looking for a book?

Get a whole library!

www.isqi.org 
CERTiFYING PEOPLE

Register your certification today at https://www.isqi.org/en/registration.html or contact us at info@isqi.org



8 The Magazine for Professional Testers www.testingexperience.com

Load testing is not a one-time procedure. It spans through the 
whole system development life cycle. It may start from technology 
or prototype scalability evaluation, continue through component 
/ unit performance testing into system performance testing be-
fore deployment and follow up in production (to troubleshooting 
performance issues and test upgrades / load increases).

What to Test

Even in functional testing we have a potentially unlimited number 
of test cases and the art of testing is to choose a limited set of 
test cases that should check the product functionality in the best 
way with given resource limitations. It is much worse with load 
testing. Each user can follow a different scenario (a sequence of 
functional steps), and even the sequence of steps of one user ver-
sus the steps of another user could affect the results significantly. 

Load testing can’t be comprehensive. Several scenarios (use cases, 
test cases) should be chosen. Usually they are the most typical 
scenarios, the ones that most users are likely to follow. It is a good 
idea to identify several classes of users – for example, administra-
tors, operators, users, or analysts. It is simpler to identify typical 
scenarios for a particular class of users. With that approach, rare 
use cases are ignored. For example, many administrator-type ac-
tivities can be omitted as far as there are few of them compared 
with other activities. 

Another important criterion is risk. If a “rare” activity presents a 
major inherent risk, it can be a good idea to add it to the scenarios 
to test. For example, if database backups can significantly affect 
performance and should be done in parallel with regular work, it 
makes sense to include a backup scenario in performance testing.

Code coverage usually doesn’t make much sense in load testing. 
It is important to know what parts of code are being processed 
in parallel by different users (that is almost impossible to track), 
not that particular code path was executed. Perhaps it is possible 
to speak about “component coverage”, making sure that all im-
portant components of the system are involved in performance 
testing. For example, if different components are responsible for 
printing HTML and PDF reports, it is a good idea to add both kinds 
of printing to testing scenarios.

Requirements

In addition to functional requirements (which are still valid for 
performance testing – the system still should do everything it is 
designed to do under load), there are other classes of require-
ments:

 ▪ Response times – how fast the system handles individual 
requests or what a real user would experience

 ▪ Throughput – how many requests the system can handle
 ▪ Concurrency – how many users or threads can work simul-

taneously

All of them are important. Good throughput with long response 
times often is as unacceptable as good response times, but just 
for a few users. 

Acceptable response times should be defined in each particular 
case. A response time of 30 minutes may be excellent for a big 
batch job, but it is absolutely unacceptable for accessing a Web 
page for an online store. Although it is often difficult to draw the 
line here, it is rather a usability or common sense decision. Keep in 

mind that for multi-user testing we get multiple response times 
for each transaction, so we need to use some aggregate values 
like averages or percentiles (for example, 90% of response times 
are less than this value). 

Throughput defines the load on the system. Unfortunately, quite 
often the number of users (concurrency) is used to define the load 
for interactive systems instead of throughput. Partially because 
that number is often easier to find, partially because it is the way 
how load testing tools define load. Without defining what each 
user is doing and how intensely (i.e. throughput for one user), the 
number of users is not a good measure of load. For example, if 
there are 500 users running short queries each minute, we have 
throughput of 30,000 queries per hour. If the same 500 users 
are running the same queries, but one per hour, the throughput 
is 500 queries per hour. So with the same 500 users we have a 
60-fold difference between loads and, probably, at least 60-fold 
difference in hardware needed. 

The intensity of load can be controlled by adding delays (often re-
ferred as “think time”) between actions in scripts or harness code. 
So one approach is to start with the total throughput the system 
should handle, then find the number of concurrent users, get the 
number of transactions per user for the test, and then try to set 
think times to ensure the proper number of transactions per user.

Finding the number of concurrent users for a new system can be 
tricky too. Usually information about real usage of similar systems 
can help to make an initial estimate. Another approach may be 
to assume what share of named (registered in the system) users 
are active (logged on). So if that share is 10%, 1,000 named users 
results in 100 active users. These numbers, of course, depend 
greatly on the nature of the system. 

Workload Implementation

If we work with a new system and have never run a load test 
against it before, the first question is how to create load. Are we 
going to generate it manually, use a load testing tool, or create 
a test harness? 

Manual testing could sometimes work if we want to simulate 
a small number of users. However, even if it is well organized, 
manual testing will introduce some variation in each test, making 
the test difficult to reproduce. Workload implementation using 
a tool (software or hardware) is quite straightforward when the 
system has a pure HTML interface, but even if there is an applet 
on the client side, it may become a serious research task, not to 
mention dealing with proprietary protocols. Creating a test har-
ness requires more knowledge about the system (for example, an 
API) and some programming skills. Each choice requires differ-
ent skills, resources, and investments. Therefore, when starting 
a new load-testing project, the first thing to do is to decide how 
the workload will be implemented and to check that this way will 
really work. After we decide how to create the workload, we need 
to find a way to verify that the workload is really being applied.

Workload Verification

Unfortunately, an absence of error messages during a load test 
does not mean that the system works correctly. An important 
part of load testing is workload verification. We should be sure 
that the applied workload is doing what it is supposed to do and 
that all errors are caught and logged. The problem is that in load 



10 The Magazine for Professional Testers www.testingexperience.com

testing we work on the protocol or API level and often don’t have 
any visual clues that something doesn’t work properly. Workload 
can be verified directly (by analyzing server responses) or, in cases 
where this is impossible, indirectly (for example, by analyzing the 
application log or database for the existence of particular entries). 

Many tools provide some ways to verify workload and check errors, 
but you need understanding what exactly is happening. Many 
tools report only HTTP errors for Web scripts by default (such as 
500 “Internal Server Error”). If we rely on the default diagnostics, 
we could still believe that everything is going well when we are 
actually getting “out of memory” errors instead of the requested 
reports. To catch such errors, we should add special commands 
to our script to check the content of HTML pages returned by 
the server.

The Effect of Data

The size and structure of data could affect load test results drasti-
cally. Using a small sample set of data for performance tests is an 
easy way to get misleading results. It is very difficult to predict 
how much the data size affects performance before real testing. 
The closer the test data is to production data, the more reliable 
are test results. 

Running multiple users hitting the same set of data (for exam-
ple, playback of an automatically created script without proper 
modifications) is an easy way to get misleading results. This data 
could be completely cached, and we will get much better results 

than in production. Or it could cause concurrency issues, and we 
will get much worse results than in production. So scripts and 
test harnesses usually should be parameterized (fixed or recorded 
data should be replaced with values from a list of possible choices) 
so that each user uses a proper set of data. The term “proper” 
here means different enough to avoid problems with caching 
and concurrency, which is specific for the system, data, and test 
requirements.

Another easy trap with data is adding new data during the tests 
without sufficient considerations. Each new test will create addi-
tional data, so each test would be done with a different amount of 
data. One way of running such tests is to restore the system to the 
original state after each test or group of tests. Or additional tests 
can be performed to prove that a change of data volume inside a 
specific range does not change the outcome of that particular test.

Exploring the System

At the beginning of a new project, it is a good practice to run 
some tests to figure out how the system behaves before creat-
ing formal plans. If no performance tests have been run, there is 
no way to predict how many users the system can support and 
how each scenario will affect overall performance. Modeling can 
help here to find the potential limits, but a bug in the code or an 
environmental issue can dwarf scalability. 

It is good to check that we do not have any functional problems. Is 
it possible to run all requested scenarios manually? Are there any 

    

pi
c:

 ©
 S

er
ge

jy
 G

al
us

hk
o 

– 
Fo

to
lia

.c
om

 g
ra

hp
ic

: ©
 W

ik
im

ed
ia

 C
om

m
on

s

Díaz & Hilterscheid GmbH / Kurfürstendamm 179 / 10707 Berlin, Germany

Tel:  +49 30 747628-0 / Fax: +49 30 747628-99

www.diazhilterscheid.de training@diazhilterscheid.de

Book your CAT training in USA!
CAT is no ordinary certification, but a professional journey into the world of Agile. As with any voyage you have to 

take the first step. You may have some experience with Agile from your current or previous employment or you may 

be venturing out into the unknown. Either way CAT has been specifically designed to partner and guide you through 

all aspects of your tour.

Open Seminar in USA:

July 2–6, 2012 in Orlando, Florida CAT goes USA



11The Magazine for Professional Testerswww.testingexperience.com

performance issues with just one or with several users? Are there 
enough computer resources to support the requested scenarios? 
If we have a functional or performance problem with one user, 
usually it should be fixed before starting performance testing 
with that scenario.

Even if there are extensive plans for performance testing, an 
iterative approach will fit better here. As soon as a new script is 
ready, run it. This will help to understand how well the system 
can handle a specific load. The results we get can help to improve 
plans and discover many issues early. By running tests we are 
learning the system and may find out that the original ideas about 
the system were not completely correct. A “waterfall” approach, 
when all scripts are created before running any multi-user test, 
is dangerous here: issues would be discovered later and a lot of 
work may need to be redone. 

Assumed Activities

Usually when people talk about performance testing, they do not 
separate it from tuning, diagnostics, or capacity planning. “Pure” 
performance testing is possible only in rare cases when the system 
and all optimal settings are well known. Usually some tuning 
activities are necessary at the beginning of testing to be sure that 
the system is properly tuned and the results will be meaningful. 
In most cases, if a performance or reliability problem is found, it 
should be diagnosed further until it becomes clear how to handle 
it. Generally speaking, performance testing, tuning, diagnostics, 
and capacity planning are quite different processes, and excluding 
any of them from the test plan if they are assumed will make the 
plan unrealistic from the beginning.

Test Environment

Conducting functional testing in virtualized and cloud environ-
ments is quite typical and has many advantages. While many 
companies promote load testing in the cloud (or from the cloud), 
it makes sense only for certain types of load testing. For example, 
it should work fine if we want to test how many users the system 
supports, would it crash under load of X users, how many servers 
we need to support Y users, etc., but are not too concerned with 
exact numbers or variability of results (or even want to see some 
real-life variability). 

However, it doesn’t quite work for performance optimization, 
when we make a change in the system and want to see how it 
impacts performance. Testing in a virtualized or cloud environ-
ment with other tenants intrinsically has some results variability 
as far as we don’t control other activities and, in the cloud, usually 
don’t even know the exact hardware configuration. 

So when we talk about performance optimization, we still need an 
isolated lab in most cases. And, if the target environment for the 
system is a cloud, it probably should be an isolated private cloud 
with hardware and software infrastructure similar to the target 
cloud. And we need monitoring access to underlying hardware 
to see how the system maps to the hardware resources and if it 
works as expected (for example, testing scaling out or evaluating 
impacts to/from other tenants – which probably should be one 
more kind of performance testing to do). 

Time Considerations

Performance tests usually take more time than functional tests. 
Usually we are interested in the steady mode during load testing. 
It means that all users need to log in and work for some time to 
be sure that we see a stable pattern of performance and resource 
utilization. Measuring performance during transition periods can 
be misleading. The more users we simulate, the more time we 
will usually need to get into the steady mode. Moreover, some 
kinds of testing (reliability, for example) can require a significant 
amount of time – from several hours to several days or even 
weeks. Therefore, the number of tests that can be run per day is 
limited. It is especially important to consider this during tuning 
or diagnostics, when the number of iterations is unknown and 
can be large.

Simulating real users requires time, especially if it isn’t just repeat-
ing actions like entering orders, but a process when some actions 
follow others. We can’t just squeeze several days of regular work 
into fifteen minutes for each user. This will not be an accurate 
representation of the real load. It should be a slice of work, not 
a squeeze.

In some cases we can make the load from each user more intensive 
and respectively decrease the number of users to keep the total 
volume of work (the throughput) the same. For example, we can 
simulate 100 users running a small report every five minutes 
instead of 300 users running that report every fifteen minutes. In 
this case, we can speak about the ratio of simulated users to real 
users (1:3 for that example). This is especially useful when we need 
to perform a lot of tests during the tuning of the system or trying 
to diagnose a problem to see the results of changes quickly. Quite 
often that approach is used when there are license limitations.

Still “squeezing” should only be used in addition to full-scale 
simulation, not instead of it. Each user consumes additional re-
sources for connections, threads, caches, etc. The exact impact 
depends on the system implementation, so simulation of 100 
users running a small report every ten minutes doesn’t guarantee 
that the system will support 600 users running that report every 
hour. Moreover, tuning for 600 users may differ significantly from 
tuning for 100 users. The higher the ratio between simulated and 
real users, the more is the need to run a test with all users to be 
sure that the system supports that number of users and that the 
system is properly tuned.

Testing Process 

Three specific characteristics of load testing affect the testing 
process and often require closer work with development to fix 
problems than functional testing does. First, a reliability or per-
formance problem often blocks further performance testing until 
the problem is fixed or a workaround is found. Second, usually 
the full setup, which often is very sophisticated, should be used 
to reproduce the problem. However, keeping the full setup for 
a long time can be expensive or even impossible. Third, debug-
ging performance problems is a sophisticated diagnostic process 
that usually requires close collaboration between a performance 
engineer running tests and analyzing the results and a devel-
oper profiling and altering code. Special tools may be needed: 
many tools, such as regular debuggers and profilers, work fine 
in a single-user environment, but do not work in the multi-user 
environment due to huge performance overheads.



12 The Magazine for Professional Testers www.testingexperience.com

Alexander Podelko
For the last fifteen years Alex 
Podelko has worked as a per-
formance engineer and ar-
chitect for several companies. 
Currently he is Consulting 
Member of Technical Staff at 
Oracle, responsible for perfor-
mance testing and optimiza-
tion of Hyperion products. 
Alex serves as a director for 
the Computer Measurement 
Group (CMG) http://cmg.org, 

a volunteer organization of performance and capacity 
planning professionals. He blogs at http://alexanderpodel-
ko.com/blog and can be found on Twitter as @apodelko.

> biography

These three characteristics make it difficult to use an asynchro-
nous process in load testing (which is often used in functional 
testing: testers look for bugs and log them into a defect tracking 
system, and then the defects are prioritized and independently 
fixed by development). What is often required is the synchronized 
work of performance engineering and development to fix the 
problems and complete performance testing.

A Systematic Approach to Changes

The tuning and diagnostic processes consist of making changes 
in the system and evaluating their impact on performance (or 
problems). It is very important to take a systematic approach to 
these changes. This could be, for example, the traditional approach 
of “one change at a time” (sometimes referred as “one factor at a 
time”, or OFAT) or using the design of experiments (DOE) theory. 
“One change at a time” here does not imply changing only one 
variable; it can mean changing several related variables to check 
a particular hypothesis. 

The relationship between changes in the system parameters and 
changes in the product behavior is usually quite complex. Any 
assumption based on common sense could be wrong. A system’s 
reaction under heavy load could differ drastically of what was 
expected. So changing several things at once without a systematic 
approach will not give the understanding of how each change 
affects results. This could mess up the testing process and lead 
to incorrect conclusions. All changes and their impacts should be 
logged to allow rollback and further analysis.

Result Analysis 

Load testing results bring much more information than just 
passed/failed. Even if we do not need to tune the system or di-
agnose a problem, we usually should consider not only transaction 
response times for all different transactions (usually using ag-
gregating metrics such as average response times or percentiles), 
but also other metrics such as resource utilization. The systems 
used to log functional testing results usually don’t have much to 
log all this information related to load testing results. 

Result analysis of load testing for enterprise-level systems can be 
quite difficult and should be based on a good knowledge of the 
system and its performance requirements, and it should involve 
all possible sources of information: measured metrics, results of 
monitoring during the test, all available logs and profiling results 
(if available). We need information not only for all components 
of the system under test, but also for the load generation envi-
ronment. For example, a heavy load on load generator machines 
can completely skew results, and the only way to know that is to 
monitor those machines.

There is always a variation in results of multi-user tests due to 
minor differences in the test environment. If the difference is large, 

it makes sense to analyze why and adjust tests accordingly. For 
example, restart the program, or even reboot the system, before 
each test to eliminate caching effects. 

Summary

To wrap up, there are serious differences in processes and required 
skills between load and functional testing. Some of them were 
discussed in this article, but these are rather examples than a 
comprehensive list. It is important to understand these differ-
ences when talking about Test Centers of Excellence, regardless 
of specific organizational structures: while load and functional 
testing both are testing, trying to fit them into the same organi-
zational structure without consideration of their specifics may 
be problematic.


