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It looks like exploratory performance testing has started to attract 
some attention and is getting a mention here and there. Mostly, I 
assume, due to the growing popularity of functional exploratory test-
ing [1]. A proponent of exploratory testing probably would not like my 
use of the word “functional” here, but not much has been written, for 
example, about performance exploratory testing – and even what has 
been written often refers to different things.

There have been attempts to directly apply functional exploratory 
testing techniques to performance testing. SmartBear blog posts [2, 3] 
contrast exploratory performance testing with “static” traditional load 
testing. My view is probably closer to Goranka Bjedov’s understanding 
as she described it back in 2007 [4].

It was clear to me that a traditional, waterfall-like approach to perfor-
mance testing is very ineffective and error-prone. I presented a more 
agile/exploratory approach to performance testing in a traditional 
waterfall software development environment at CMG in 2008 [5]. I in-
tended to apply the original principals of Manifesto for Agile Software 
Development [6] (valuing “Individuals and interactions over processes 
and tools. Working software over comprehensive documentation. Cus-
tomer collaboration over contract negotiation. Responding to change 
over following a plan.”) to performance engineering.

Performance testing in projects utilizing specific agile development 
methodologies is a separate topic. Having become more involved in the 
agile development environment, I added some aspects of it to my pre-
sentation at the Performance and Capacity 2013 conference by CMG [7].

The words “agile” and “exploratory” are periodically and loosely used in 
relation to performance testing – but it does not look like we have any 
accepted definition. Both terms are, in a way, antonyms of traditional 
waterfall-like performance testing – so their meaning may somewhat 
overlap in certain contexts. I explained my view of using the word 
“agile” for performance testing in the above-mentioned presentations. 
Now it is time to contemplate the use of the word “exploratory” in the 
context of performance testing.

If we look at the definition of exploratory testing as “simultaneous 
learning, test design and test execution”1, we can see that it makes 
even more sense for performance testing, because learning here is 
more complicated, and good test design and execution heavily depend 
on a good understanding of the system.

If we talk about the specific techniques used in functional exploratory 
testing, some can be mapped to performance testing – but definitely 
should not be copied blindly. Working with a completely new system, 
I found that I rather naturally align my work to a kind of “session” – so 
session-related techniques of functional exploratory testing are prob-
ably applicable to performance testing. I would not apply such details 
as session duration, for example – but the overall idea definitely makes 
sense. You decide what area of functionality you want to explore, 
figure out a way to do that (for example, create a load testing script) 
and start to run tests to see how the system behaves. For example, 
if you want to investigate the creation of purchase orders, you may 
run tests for different numbers of concurrent users, check resource 
utilization, see how the system will behave under stress load of that 
kind, or how response times and resource utilization respond to the 
number of purchase orders in the database, etc. The outcome would 
be at least three-fold: (1) early feedback to development about the 
problems and concerns found; (2) understanding the system dynamic 
for that kind of workload, what kind of load it can handle, and how 
much resource it needs; (3) obtaining input for other kinds of test-
ing, such as automated regression or realistic performance testing to 
validate requirements. Then we move to another session exploring 
the performance of another area of functionality or another aspect of 
performance (for example, how performance depends on the number 
of items purchased in the order).

The approach looks quite natural to me and maximizes the amount of 
early feedback to development, which is probably the most valuable 
outcome of performance testing for new systems. However, there are 
different opinions. Objections mostly align along three notions, which, 
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if taken in their pure form, are not fully applicable to performance 
testing of new systems:

▪▪ Creating a detailed project plan (with test design, time estimates, 
etc) in the beginning and adhering to it.

▪▪ Fully automating performance testing.

▪▪ Using scientific Design of Experiments (DOE) approaches.

I mention all three of them here because (1) they are often referred as 
alternatives to exploratory testing; (2) they all are rather idealistic for 
the same reason – we do not know much about new systems in the 
beginning and every new test provides us with additional information. 
And often this additional information makes us to modify the system. 
Somehow the point that the system is usually changing in the process 
of performance testing is often overlooked.

For example, if your bottleneck is the number of web server threads, 
it does not make much sense to continue testing the system once you 
realize it. As you tune the number of threads, the system’s behavior will 
change drastically. And you would not know about it from the begin-
ning (well, this is a simple example and an experienced performance 
engineer may tune such obvious things from the very beginning – but, 
at least in my experience, you will always have something to tune or 
optimize that you have no idea about in the beginning).

So, actually, you probably do exploratory testing of new systems one 
way or another even if you do not recognize it. And it would probably 
be more productive to fully acknowledge it and make it a part of the 
process, so you will not feel bad facing multiple issues and will not 
need to explain why your plans are changing all the time. I would 
concur here with the great post “TDD is dead. Long live testing.” by 
David Heinemeier Hansson [8] discussing, in particular, issues related 
to using idealistic approaches.	 ◼
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