
CMAP® Certifi ed
Mobile App Professional
The new certifi cation for Mobile App Testing

Díaz & Hilterscheid Unternehmensberatung GmbH
Kurfürstendamm 179
10707 Berlin
Germany

Phone: +49 (0)30 74 76 28-0
Fax: +49 (0)30 74 76 28-99
Email: info@diazhilterscheid.com
Website: cmap.diazhilterscheid.com

Apps and mobiles have become an important ele-
ment of today’s society in a very short time frame.
It is important that IT professionals are up-to-date
with the latest developments of mobile technology
in order to understand the ever evolving impacts on
testing, performance, and security. These impacts
transpire and infl uence how IT specialists develop

and test software in their everyday work. A Mobile
App Testing certifi ed professional can support the
requirements team in review of mobile application,
improve user experience with a strong understand-
ing of usability and have the ability to identify and ap-
ply appropriate methods of testing, including proper
usage of tools, unique to mobile technology.

DE December 15–16, 2014 · Berlin –
Christmas Special: 200 € off!

EN December 18–19, 2014 · Berlin –
Christmas Special: 200 € off!

DE January 12–13, 2015 · Berlin

For further information visit
cmap.diazhilterscheid.com or contact us at
info@diazhilterscheid.com.

All our courses are available as inhouse
courses and outside of Germany on demand!

011000100110100101101110011000010111001001111001

110001110001000011100110011110110000010000011110

The Three Pillars of
Agile Quality and Testing
by Robert Galen

Testing the Internet of
Things – The Future is Here
by Venkat Ramesh Atigadda

… and many more

The Magazine for Professional Testers

28
December 2014

14 Testing Experience – 28/201414 Testing Experience – 28/2014

It looks like exploratory performance testing has started to attract
some attention and is getting a mention here and there. Mostly, I
assume, due to the growing popularity of functional exploratory test-
ing [1]. A proponent of exploratory testing probably would not like my
use of the word “functional” here, but not much has been written, for
example, about performance exploratory testing – and even what has
been written often refers to different things.

There have been attempts to directly apply functional exploratory
testing techniques to performance testing. SmartBear blog posts [2, 3]
contrast exploratory performance testing with “static” traditional load
testing. My view is probably closer to Goranka Bjedov’s understanding
as she described it back in 2007 [4].

It was clear to me that a traditional, waterfall-like approach to perfor-
mance testing is very ineffective and error-prone. I presented a more
agile/exploratory approach to performance testing in a traditional
waterfall software development environment at CMG in 2008 [5]. I in-
tended to apply the original principals of Manifesto for Agile Software
Development [6] (valuing “Individuals and interactions over processes
and tools. Working software over comprehensive documentation. Cus-
tomer collaboration over contract negotiation. Responding to change
over following a plan.”) to performance engineering.

Performance testing in projects utilizing specific agile development
methodologies is a separate topic. Having become more involved in the
agile development environment, I added some aspects of it to my pre-
sentation at the Performance and Capacity 2013 conference by CMG [7].

The words “agile” and “exploratory” are periodically and loosely used in
relation to performance testing – but it does not look like we have any
accepted definition. Both terms are, in a way, antonyms of traditional
waterfall-like performance testing – so their meaning may somewhat
overlap in certain contexts. I explained my view of using the word
“agile” for performance testing in the above-mentioned presentations.
Now it is time to contemplate the use of the word “exploratory” in the
context of performance testing.

If we look at the definition of exploratory testing as “simultaneous
learning, test design and test execution”1, we can see that it makes
even more sense for performance testing, because learning here is
more complicated, and good test design and execution heavily depend
on a good understanding of the system.

If we talk about the specific techniques used in functional exploratory
testing, some can be mapped to performance testing – but definitely
should not be copied blindly. Working with a completely new system,
I found that I rather naturally align my work to a kind of “session” – so
session-related techniques of functional exploratory testing are prob-
ably applicable to performance testing. I would not apply such details
as session duration, for example – but the overall idea definitely makes
sense. You decide what area of functionality you want to explore,
figure out a way to do that (for example, create a load testing script)
and start to run tests to see how the system behaves. For example,
if you want to investigate the creation of purchase orders, you may
run tests for different numbers of concurrent users, check resource
utilization, see how the system will behave under stress load of that
kind, or how response times and resource utilization respond to the
number of purchase orders in the database, etc. The outcome would
be at least three-fold: (1) early feedback to development about the
problems and concerns found; (2) understanding the system dynamic
for that kind of workload, what kind of load it can handle, and how
much resource it needs; (3) obtaining input for other kinds of test-
ing, such as automated regression or realistic performance testing to
validate requirements. Then we move to another session exploring
the performance of another area of functionality or another aspect of
performance (for example, how performance depends on the number
of items purchased in the order).

The approach looks quite natural to me and maximizes the amount of
early feedback to development, which is probably the most valuable
outcome of performance testing for new systems. However, there are
different opinions. Objections mostly align along three notions, which,

Exploratory
Performance Testing

ÛÛ Performance
Column by Alex Podelko

Testing Experience – 28/2014 15Testing Experience – 28/2014 15

if taken in their pure form, are not fully applicable to performance
testing of new systems:

▪▪ Creating a detailed project plan (with test design, time estimates,
etc) in the beginning and adhering to it.

▪▪ Fully automating performance testing.

▪▪ Using scientific Design of Experiments (DOE) approaches.

I mention all three of them here because (1) they are often referred as
alternatives to exploratory testing; (2) they all are rather idealistic for
the same reason – we do not know much about new systems in the
beginning and every new test provides us with additional information.
And often this additional information makes us to modify the system.
Somehow the point that the system is usually changing in the process
of performance testing is often overlooked.

For example, if your bottleneck is the number of web server threads,
it does not make much sense to continue testing the system once you
realize it. As you tune the number of threads, the system’s behavior will
change drastically. And you would not know about it from the begin-
ning (well, this is a simple example and an experienced performance
engineer may tune such obvious things from the very beginning – but,
at least in my experience, you will always have something to tune or
optimize that you have no idea about in the beginning).

So, actually, you probably do exploratory testing of new systems one
way or another even if you do not recognize it. And it would probably
be more productive to fully acknowledge it and make it a part of the
process, so you will not feel bad facing multiple issues and will not
need to explain why your plans are changing all the time. I would
concur here with the great post “TDD is dead. Long live testing.” by
David Heinemeier Hansson [8] discussing, in particular, issues related
to using idealistic approaches.	 ◼

References

[1]	 Exploratory Testing. Wikipedia.
http://en.wikipedia.org/wiki/Exploratory_testing

[2]	 Ole Lensmar. 2012. Why Your Application Needs Exploratory Load
Testing Today. http://blog.smartbear.com/loadui/why-your-
application-needs-exploratory-load-testing-today

[3]	Dennis Guldstrand. 2013. Should Exploratory Load Testing Be Part
of your Process? http://blog.smartbear.com/load-testing/should-
exploratory-load-testing-be-part-of-your-process/

[4]	Goranka Bjedov. Performance Testing. 2007. http://googletesting.
blogspot.com/2007/10/performance-testing.html

[5]	Alexander.Podelko. Agile Performance Testing. CMG, 2008.
http://alexanderpodelko.com/docs/Agile_Performance_Testing_
CMG08.pdf

[6]	Manifesto for Agile Software Development. 2001.
http://agilemanifesto.org/

[7]	 Alexander Podelko. Agile Aspects of Performance
Testing. Performance and Capacity by CMG, 2013.
http://www.slideshare.net/apodelko/agile-aspects-of-
performance-testing

[8]	David Heinemeier Hansson. TDD is dead. Long live testing. 2014.
http://david.heinemeierhansson.com/2014/tdd-is-dead-long-
live-testing.html

For the last 17 years, Alex Podelko has worked as
a performance engineer and architect for sev-
eral companies. Currently he is a Consulting
Member of Technical Staff at Oracle, responsible
for performance testing and optimization of
Enterprise Performance Management and Busi-
ness Intelligence (a.k.a. Hyperion) products. Alex

periodically talks and writes about performance-related topics, ad-
vocating tearing down silo walls between different groups of per-
formance professionals. His collection of performance-related links
and documents (including his recent papers and presentations) can
be found at www.alexanderpodelko.com. He blogs at www.alexan-
derpodelko.com/blog and can be found on Twitter as @apodelko.
Alex currently serves as a director of the Computer Measurement
Group (CMG) www.cmg.org, an organization of performance and
capacity planning professionals.

> about the author

http://en.wikipedia.org/wiki/Exploratory_testing
http://blog.smartbear.com/loadui/why-your-application-needs-exploratory-load-testing-today
http://blog.smartbear.com/loadui/why-your-application-needs-exploratory-load-testing-today
http://blog.smartbear.com/load-testing/should-
exploratory-load-testing-be-part-of-your-process/
http://blog.smartbear.com/load-testing/should-
exploratory-load-testing-be-part-of-your-process/
http://googletesting.blogspot.com/2007/10/performance-testing.html
http://googletesting.blogspot.com/2007/10/performance-testing.html
http://alexanderpodelko.com/docs/Agile_Performance_Testing_CMG08.pdf
http://alexanderpodelko.com/docs/Agile_Performance_Testing_CMG08.pdf
http://agilemanifesto.org/
http://www.slideshare.net/apodelko/agile-aspects-of-performance-testing
http://www.slideshare.net/apodelko/agile-aspects-of-performance-testing
http://david.heinemeierhansson.com/2014/tdd-is-dead-long-live-testing.html
http://david.heinemeierhansson.com/2014/tdd-is-dead-long-live-testing.html
http://www.alexanderpodelko.com
http://www.alexanderpodelko.com/blog
http://www.alexanderpodelko.com/blog
http://twitter.com/apodelko
http://www.cmg.org

